論文の概要: A Constraint-Preserving Neural Network Approach for Solving Mean-Field Games Equilibrium
- arxiv url: http://arxiv.org/abs/2501.17450v2
- Date: Mon, 10 Mar 2025 14:42:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:40:04.747384
- Title: A Constraint-Preserving Neural Network Approach for Solving Mean-Field Games Equilibrium
- Title(参考訳): 平均フィールドゲーム平衡を解くための制約保存型ニューラルネットワークアプローチ
- Authors: Jinwei Liu, Lu Ren, Wang Yao, Xiao Zhang,
- Abstract要約: ニューラルネットワークに基づく手法は,高次元平均フィールドゲーム(MFG)平衡の解法に有効であることを示す。
本稿では、FBSDEとそれに伴うMFG平衡の固定点定式化を解決するためにニューラルネットワークを統合するネットワークアプローチであるNF-MKV Netを提案する。
- 参考スコア(独自算出の注目度): 6.168001746423872
- License:
- Abstract: Neural network-based methods have demonstrated effectiveness in solving high-dimensional Mean-Field Games (MFG) equilibria, yet ensuring mathematically consistent density-coupled evolution remains a major challenge. This paper proposes the NF-MKV Net, a neural network approach that integrates process-regularized normalizing flow (NF) with state-policy-connected time-series neural networks to solve MKV FBSDEs and their associated fixed-point formulations of MFG equilibria. The method first reformulates MFG equilibria as MKV FBSDEs, embedding density evolution into equation coefficients within a probabilistic framework. Neural networks are then employed to approximate value functions and their gradients. To enforce volumetric invariance and temporal continuity, NF architectures impose loss constraints on each density transfer function.
- Abstract(参考訳): ニューラルネットワークに基づく手法は、高次元平均フィールドゲーム(MFG)平衡の解法の有効性を示したが、数学的に一貫した密度結合進化は依然として大きな課題である。
本稿では,プロセス規則化正規化フロー(NF)と状態政治接続型時系列ニューラルネットワークを統合したニューラルネットワーク手法であるNF-MKV Netを提案し,MKV FBSDEとそのMFG平衡の固定点定式化について述べる。
この方法はまずMFG平衡をMKV FBSDEsとして再構成し、確率的枠組み内の方程式係数に密度進化を埋め込む。
ニューラルネットワークは、値関数とその勾配を近似するために使用される。
体積不変性と時間連続性を強制するために、NFアーキテクチャは各密度伝達関数に損失制約を課す。
関連論文リスト
- Efficient and Scalable Deep Reinforcement Learning for Mean Field Control Games [16.62770187749295]
平均場制御ゲーム(MFCG)は、無限に多くの相互作用するエージェントのシステムを解析するための強力な理論的枠組みを提供する。
本稿では,MFCGの近似平衡解に対する拡張性のある深層強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2024-12-28T02:04:53Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - High Accuracy Uncertainty-Aware Interatomic Force Modeling with
Equivariant Bayesian Neural Networks [3.028098724882708]
原子間力学習のための新しいモンテカルロマルコフ連鎖サンプリングアルゴリズムを提案する。
さらに、NequIPアーキテクチャに基づくニューラルネットワークモデルを導入し、新しいサンプリングアルゴリズムと組み合わせることで、最先端の精度で予測が得られ、不確実性の優れた指標が得られることを示す。
論文 参考訳(メタデータ) (2023-04-05T10:39:38Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
我々は,Symmetric NMF問題に対するSymNMF-Netと呼ばれるニューラルネットワークを提案する。
各ブロックの推測は最適化の単一イテレーションに対応することを示す。
実世界のデータセットに関する実証的な結果は、我々のSymNMF-Netの優位性を示している。
論文 参考訳(メタデータ) (2022-05-26T08:17:39Z) - A control method for solving high-dimensional Hamiltonian systems
through deep neural networks [0.2752817022620644]
まず、ハミルトニアン制御系がまさに解決すべき問題であるような対応する最適制御問題を導入し、その後、制御問題の異なるケースに適した2つの異なるアルゴリズムを開発し、深層ニューラルネットワークによる制御を近似する。
数値的な結果から、FBSDEを解く観点から以前に開発されたDeep FBSDE法と比較して、新しいアルゴリズムはより高速に収束する。
論文 参考訳(メタデータ) (2021-11-04T05:22:08Z) - Limiting fluctuation and trajectorial stability of multilayer neural
networks with mean field training [3.553493344868413]
ネットワーク深度における多層ネットワークの場合の変動について検討する。
この2階のMF限界におけるニューロン間の複雑な相互作用の枠組みを実演する。
極限定理は、この極限と大幅ネットワークのゆらぎを関連付けることが証明されている。
論文 参考訳(メタデータ) (2021-10-29T17:58:09Z) - Stability Analysis of Unfolded WMMSE for Power Allocation [80.71751088398209]
電力割り当ては、無線ネットワークにおける基本的な問題の1つである。
これらのアルゴリズムの出力電力配分は入力摂動に関して安定であることが不可欠である。
本稿では,グラフニューラルネットワークを利用した最新のアルゴリズムであるUWMMSEに着目した。
論文 参考訳(メタデータ) (2021-10-14T15:44:19Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。