論文の概要: Accuracy and Robustness of Weight-Balancing Methods for Training PINNs
- arxiv url: http://arxiv.org/abs/2501.18582v2
- Date: Tue, 11 Feb 2025 10:16:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:03:40.442918
- Title: Accuracy and Robustness of Weight-Balancing Methods for Training PINNs
- Title(参考訳): PINN訓練におけるウェイトバランシング法の精度とロバスト性
- Authors: Matthieu Barreau, Haoming Shen,
- Abstract要約: PINNの文脈で精度と堅牢性を明確に定義する。
本稿では,Primal-Dual (PD) 最適化フレームワークに基づく新しいトレーニングアルゴリズムを提案する。
提案手法は,既存のウェイトバランス法に匹敵する性能を維持しつつ,PINNの堅牢性を向上する。
- 参考スコア(独自算出の注目度): 0.06906005491572399
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) have emerged as powerful tools for integrating physics-based models with data by minimizing both data and physics losses. However, this multi-objective optimization problem is notoriously challenging, with some benchmark problems leading to unfeasible solutions. To address these issues, various strategies have been proposed, including adaptive weight adjustments in the loss function. In this work, we introduce clear definitions of accuracy and robustness in the context of PINNs and propose a novel training algorithm based on the Primal-Dual (PD) optimization framework. Our approach enhances the robustness of PINNs while maintaining comparable performance to existing weight-balancing methods. Numerical experiments demonstrate that the PD method consistently achieves reliable solutions across all investigated cases, even in the low-data regime, and can be easily implemented, facilitating its practical adoption. The code is available at https://github.com/haoming-SHEN/Accuracy-and-Robustness-of-Weight-Balancing-Methods-for-Training-PIN Ns.git.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、データと物理の損失を最小化し、物理モデルとデータを統合する強力なツールとして登場した。
しかし、この多目的最適化問題は、いくつかのベンチマーク問題によって実現不可能な解決につながることで悪名高い。
これらの問題に対処するために、損失関数の適応重み調整を含む様々な戦略が提案されている。
本研究では,PINNの文脈における精度と堅牢性を明確に定義し,Primal-Dual (PD) 最適化フレームワークに基づく新しいトレーニングアルゴリズムを提案する。
提案手法は,既存のウェイトバランス法に匹敵する性能を維持しつつ,PINNの堅牢性を向上する。
数値実験により、PD法は、低データ状態であっても、調査対象のすべてのケースにおいて、信頼性の高い解を一貫して達成し、実装が容易であることを示し、その実践的採用を容易にする。
コードはhttps://github.com/haoming-SHEN/Accuracy-and-Robustness-of-Weight-Balancing-Methods-for-Training-PIN Ns.gitで公開されている。
関連論文リスト
- Physics-Informed Neural Networks with Trust-Region Sequential Quadratic Programming [4.557963624437784]
最近の研究によると、物理情報ニューラルネットワーク(PINN)は比較的複雑な部分微分方程式(PDE)を学習できない可能性がある。
本稿では, 信頼領域逐次準計画法(trSQP-PINN)を導入し, PINNの障害モードに対処する。
PINNのようにペナル化ソフト制約損失を直接訓練するのに対し,本手法はソフト制約損失を利用して信頼範囲半径を適応的に調整しながら,ハード制約損失の線形2次近似を行う。
論文 参考訳(メタデータ) (2024-09-16T23:22:12Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Failure-informed adaptive sampling for PINNs [5.723850818203907]
物理学インフォームドニューラルネットワーク(PINN)は、幅広い領域でPDEを解決する効果的な手法として登場した。
しかし、最近の研究では、異なるサンプリング手順でPINNの性能が劇的に変化することが示されている。
本稿では,信頼度分析の視点から,故障インフォームドPINNという適応的手法を提案する。
論文 参考訳(メタデータ) (2022-10-01T13:34:41Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
ワッサーシュタインのような最適輸送(OT)距離は、GANやドメイン適応のようないくつかの領域で使用されている。
本稿では,現代のディープラーニングアプリケーションに適用可能な,ロバストなOT最適化の計算効率のよい2つの形式を提案する。
提案手法では, ノイズの多いデータセット上で, 外部分布で劣化したGANモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-10-12T17:13:40Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。