論文の概要: Learning Hamiltonian Dynamics with Bayesian Data Assimilation
- arxiv url: http://arxiv.org/abs/2501.18808v1
- Date: Fri, 31 Jan 2025 00:03:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:57:52.378566
- Title: Learning Hamiltonian Dynamics with Bayesian Data Assimilation
- Title(参考訳): ベイズデータ同化によるハミルトンダイナミクスの学習
- Authors: Taehyeun Kim, Tae-Geun Kim, Anouck Girard, Ilya Kolmanovsky,
- Abstract要約: 我々は未知のハミルトン力学系における時系列予測のためのニューラルネットワークに基づくアプローチを開発した。
本稿では,自己回帰予測誤差を学習目的に組み込んだ自己回帰型ハミルトンニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 1.3499500088995464
- License:
- Abstract: In this paper, we develop a neural network-based approach for time-series prediction in unknown Hamiltonian dynamical systems. Our approach leverages a surrogate model and learns the system dynamics using generalized coordinates (positions) and their conjugate momenta while preserving a constant Hamiltonian. To further enhance long-term prediction accuracy, we introduce an Autoregressive Hamiltonian Neural Network, which incorporates autoregressive prediction errors into the training objective. Additionally, we employ Bayesian data assimilation to refine predictions in real-time using online measurement data. Numerical experiments on a spring-mass system and highly elliptic orbits under gravitational perturbations demonstrate the effectiveness of the proposed method, highlighting its potential for accurate and robust long-term predictions.
- Abstract(参考訳): 本稿では,未知のハミルトン力学系における時系列予測のためのニューラルネットワークに基づく手法を提案する。
提案手法は代理モデルを活用し,一般座標(配置)とその共役モータを用いて系の力学を学習し,定数ハミルトニアンを保留する。
長期予測精度をさらに高めるために,自己回帰予測誤差を訓練対象に組み込んだ自己回帰型ハミルトンニューラルネットワークを導入する。
さらに,オンライン計測データを用いてリアルタイムに予測を洗練するためにベイズデータ同化を用いる。
重力摂動下でのバネ質量系と高度楕円軌道に関する数値実験は,提案手法の有効性を実証し,高精度かつ堅牢な長期予測の可能性を強調した。
関連論文リスト
- Learning and Current Prediction of PMSM Drive via Differential Neural Networks [13.370017978792479]
本研究では,ディファレンシャルニューラルネットワーク(DNN)を用いた非線形システムのモデル化手法を提案する。
本手法の有効性は, 各種負荷乱れおよび無負荷条件下で行った実験により検証した。
論文 参考訳(メタデータ) (2024-12-12T07:43:27Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
本稿では,Voronoi Tessellation (DSOVT) フレームワークを用いたスパース観測からの動的システム予測について紹介する。
ボロノイテッセルレーションと深層学習モデルを統合することで、DSOVTは疎く非構造的な観測で力学系の予測に適している。
純粋にデータ駆動モデルと比較して、我々の物理学に基づくアプローチは、明示的に定式化された力学の中で物理法則を学習することができる。
論文 参考訳(メタデータ) (2024-08-31T13:43:52Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
我々は、Koopman Invertible Autoencoders (KIA) と呼ぶ、Koopman演算子理論に基づく新しい機械学習モデルを提案する。
KIAは、無限次元ヒルベルト空間における前方と後方のダイナミクスをモデル化することによって、システムの固有の特性を捉えている。
これにより,低次元表現を効率よく学習し,長期システムの挙動をより正確に予測することが可能になる。
論文 参考訳(メタデータ) (2023-09-19T03:42:55Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
本稿では,既存のハミルトンニューラルネットワーク構造を適応型シンプレクティックリカレントニューラルネットワークに組み合わせたアーキテクチャを提案する。
このアーキテクチャは、ハミルトニアン力学を予測する際に、これまで提案されていたニューラルネットワークよりも大幅に優れていた。
本手法は, 単一パラメータポテンシャルに対して有効であり, 長期間にわたって正確な予測を行うことができることを示す。
論文 参考訳(メタデータ) (2023-07-22T19:04:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Bayesian Identification of Nonseparable Hamiltonian Systems Using
Stochastic Dynamic Models [0.13764085113103217]
本稿では,システム同定(ID)の確率的定式化と非分離ハミルトニアン系の推定を提案する。
非分離ハミルトニアン系は、天体物理学、ロボット工学、渦力学、荷電粒子力学、量子力学などの様々な科学・工学応用のモデルに現れる。
論文 参考訳(メタデータ) (2022-09-15T23:11:11Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
本稿では,モデル系の連続時間軌跡を推定し,ハミルトニアンニューラルネットワークを強化することを提案する。
提案手法は, 低サンプリング率, ノイズ, 不規則な観測において, HNNに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-04-11T13:25:45Z) - SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
from Vision [73.26414295633846]
最近提案されたモデルのクラスは、高次元観測から潜在力学を学習しようと試みている。
既存の手法は画像再構成の品質に依存しており、学習した潜在力学の質を常に反映しているわけではない。
我々は、基礎となるハミルトン力学が忠実に捕獲されたかどうかのバイナリ指標を含む、一連の新しい尺度を開発する。
論文 参考訳(メタデータ) (2021-11-10T23:26:58Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。