論文の概要: Bayesian Identification of Nonseparable Hamiltonian Systems Using
Stochastic Dynamic Models
- arxiv url: http://arxiv.org/abs/2209.07646v1
- Date: Thu, 15 Sep 2022 23:11:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 13:55:08.173541
- Title: Bayesian Identification of Nonseparable Hamiltonian Systems Using
Stochastic Dynamic Models
- Title(参考訳): 確率動的モデルを用いた非分離ハミルトニアンのベイズ同定
- Authors: Harsh Sharma, Nicholas Galioto, Alex A. Gorodetsky, Boris Kramer
- Abstract要約: 本稿では,システム同定(ID)の確率的定式化と非分離ハミルトニアン系の推定を提案する。
非分離ハミルトニアン系は、天体物理学、ロボット工学、渦力学、荷電粒子力学、量子力学などの様々な科学・工学応用のモデルに現れる。
- 参考スコア(独自算出の注目度): 0.13764085113103217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a probabilistic Bayesian formulation for system
identification (ID) and estimation of nonseparable Hamiltonian systems using
stochastic dynamic models. Nonseparable Hamiltonian systems arise in models
from diverse science and engineering applications such as astrophysics,
robotics, vortex dynamics, charged particle dynamics, and quantum mechanics.
The numerical experiments demonstrate that the proposed method recovers
dynamical systems with higher accuracy and reduced predictive uncertainty
compared to state-of-the-art approaches. The results further show that accurate
predictions far outside the training time interval in the presence of sparse
and noisy measurements are possible, which lends robustness and
generalizability to the proposed approach. A quantitative benefit is prediction
accuracy with less than 10% relative error for more than 12 times longer than a
comparable least-squares-based method on a benchmark problem.
- Abstract(参考訳): 本稿では,システム同定(ID)の確率ベイズ的定式化と確率力学モデルを用いた非分離ハミルトン系の推定を提案する。
非分離ハミルトニアン系は、天体物理学、ロボティクス、渦動力学、荷電粒子動力学、量子力学などの様々な科学および工学応用のモデルから生じる。
数値実験により, 提案手法は, 最先端手法と比較して精度が高く, 予測の不確実性を低減できることを示した。
さらに,スパース測定や雑音測定でトレーニング時間間隔をはるかに超える精度の予測が可能であり,提案手法の堅牢性と一般化性に寄与することを示した。
定量的利点は、ベンチマーク問題における最小二乗法よりも12倍以上長い相対誤差が10%未満の予測精度である。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - An information field theory approach to Bayesian state and parameter estimation in dynamical systems [0.0]
本稿では、連続時間決定論的力学系に適した状態とパラメータ推定のためのスケーラブルなベイズ的手法を開発する。
システム応答の関数空間に物理インフォームドされた事前確率測度を構築し、物理を満たす関数がより高い確率で現れるようにする。
論文 参考訳(メタデータ) (2023-06-03T16:36:43Z) - Reservoir Computing with Error Correction: Long-term Behaviors of
Stochastic Dynamical Systems [5.815325960286111]
本稿では,Reservoir Computingと正規化フローを組み合わせたデータ駆動型フレームワークを提案する。
提案手法の有効性をVan der Pal, El Nino-Southern Oscillation Simple model, Lorenz system などいくつかの実験で検証した。
論文 参考訳(メタデータ) (2023-05-01T05:50:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
本稿では,非線形力学系の部分的,雑音的,不規則な観測からベイズ系を同定する機械学習フレームワーク(GP-NODE)を提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
捕食者予備システム,システム生物学,50次元ヒューマンモーションダイナミクスシステムを含む提案GP-NODE法の有効性を示すために,一連の数値的研究を行った。
論文 参考訳(メタデータ) (2021-03-04T23:42:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Probabilistic solution of chaotic dynamical system inverse problems
using Bayesian Artificial Neural Networks [0.0]
カオスシステムの逆問題は数値的に困難である。
モデルパラメータの小さな摂動は、推定された前方軌道において非常に大きな変化を引き起こす可能性がある。
ビザレニューラルネットワークは、モデルに同時に適合し、モデルのパラメータの不確実性を推定するために使用することができる。
論文 参考訳(メタデータ) (2020-05-26T20:35:02Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。