論文の概要: Learning Sheaf Laplacian Optimizing Restriction Maps
- arxiv url: http://arxiv.org/abs/2501.19207v1
- Date: Fri, 31 Jan 2025 15:15:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:58:13.768734
- Title: Learning Sheaf Laplacian Optimizing Restriction Maps
- Title(参考訳): 棚層ラプラシアン最適化制限マップの学習
- Authors: Leonardo Di Nino, Sergio Barbarossa, Paolo Di Lorenzo,
- Abstract要約: 本稿では,グラフのノード上で観測されたデータの集合から層ラプラシアンを推定する新しい枠組みを提案する。
グラフのノード上に存在するデータの相互相関と次元差の2つの重要な要因によってグラフがどう影響されるかを示す。
- 参考スコア(独自算出の注目度): 19.477754758501707
- License:
- Abstract: The aim of this paper is to propose a novel framework to infer the sheaf Laplacian, including the topology of a graph and the restriction maps, from a set of data observed over the nodes of a graph. The proposed method is based on sheaf theory, which represents an important generalization of graph signal processing. The learning problem aims to find the sheaf Laplacian that minimizes the total variation of the observed data, where the variation over each edge is also locally minimized by optimizing the associated restriction maps. Compared to alternative methods based on semidefinite programming, our solution is significantly more numerically efficient, as all its fundamental steps are resolved in closed form. The method is numerically tested on data consisting of vectors defined over subspaces of varying dimensions at each node. We demonstrate how the resulting graph is influenced by two key factors: the cross-correlation and the dimensionality difference of the data residing on the graph's nodes.
- Abstract(参考訳): 本研究の目的は,グラフのトポロジや制限マップを含む層ラプラシアンを,グラフのノード上で観測されたデータの集合から推定する新しい枠組みを提案することである。
提案手法は,グラフ信号処理の重要な一般化を表す層理論に基づく。
学習問題は、観測データの総変動を最小化する層ラプラシアンを見つけることを目的としており、各エッジの変動も、関連する制約マップを最適化することで局所的に最小化する。
半定値プログラミングに基づく代替手法と比較して、基本ステップはすべて閉じた形で解決されるので、我々の解ははるかに数値的に効率的である。
この方法は、各ノードの様々な次元のサブスペース上で定義されたベクトルからなるデータに対して数値的にテストされる。
グラフのノード上に存在するデータの相互相関と次元差の2つの重要な要因によってグラフがどう影響されるかを示す。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Joint inference of multiple graphs with hidden variables from stationary
graph signals [19.586429684209843]
本稿では,隠れ変数の影響をモデル化した共同グラフトポロジ推論手法を提案する。
観測された信号が探索グラフ上で定常であるという仮定の下で、複数ネットワークの合同推定により、そのような関係を利用することができる。
論文 参考訳(メタデータ) (2021-10-05T21:31:36Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
多層グラフクラスタリングは、グラフノードをカテゴリまたはコミュニティに分割することを目指しています。
与えられた多層グラフの層をクラスタリングに親しみやすい埋め込みを提案する。
実験の結果,本手法は著しい改善をもたらすことがわかった。
論文 参考訳(メタデータ) (2021-03-30T17:36:40Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Joint Inference of Multiple Graphs from Matrix Polynomials [34.98220454543502]
ノード上の観測からグラフ構造を推定することは重要かつ一般的なネットワーク科学課題である。
ノードの信号の観測から複数のグラフを共同で推定する問題について検討する。
本稿では,真のグラフの回復を保証するための凸最適化手法を提案する。
論文 参考訳(メタデータ) (2020-10-16T02:45:15Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
グラフ信号定常性の概念に依存するオフライン手法を提案する。
我々の検出器は、漸近的でない不等式オラクルの証拠を伴っている。
論文 参考訳(メタデータ) (2020-06-18T15:51:38Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。