論文の概要: GNN-DT: Graph Neural Network Enhanced Decision Transformer for Efficient Optimization in Dynamic Environments
- arxiv url: http://arxiv.org/abs/2502.01778v1
- Date: Mon, 03 Feb 2025 19:35:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:52:18.038261
- Title: GNN-DT: Graph Neural Network Enhanced Decision Transformer for Efficient Optimization in Dynamic Environments
- Title(参考訳): GNN-DT:動的環境における効率的な最適化のためのグラフニューラルネットワーク強化決定変換器
- Authors: Stavros Orfanoudakis, Nanda Kishor Panda, Peter Palensky, Pedro P. Vergara,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)を組み込んだ新しいDecision Transformer(DT)アーキテクチャであるGNN-DTを紹介する。
以前に収集した軌道から学習することで、GNN-DTは正確なシミュレータへの依存を減らし、オンライン強化学習(RL)アルゴリズムのスパース報酬に対処する。
複雑な電気自動車(EV)の充電最適化問題に対するGNN-DTの評価を行い、その性能が優れていること、およびトレーニング軌道を著しく少なくする必要があることを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reinforcement Learning (RL) methods used for solving real-world optimization problems often involve dynamic state-action spaces, larger scale, and sparse rewards, leading to significant challenges in convergence, scalability, and efficient exploration of the solution space. This study introduces GNN-DT, a novel Decision Transformer (DT) architecture that integrates Graph Neural Network (GNN) embedders with a novel residual connection between input and output tokens crucial for handling dynamic environments. By learning from previously collected trajectories, GNN-DT reduces dependence on accurate simulators and tackles the sparse rewards limitations of online RL algorithms. We evaluate GNN-DT on the complex electric vehicle (EV) charging optimization problem and prove that its performance is superior and requires significantly fewer training trajectories, thus improving sample efficiency compared to existing DT baselines. Furthermore, GNN-DT exhibits robust generalization to unseen environments and larger action spaces, addressing a critical gap in prior DT-based approaches
- Abstract(参考訳): 実世界の最適化問題を解決するために使用される強化学習(RL)手法は、しばしば動的状態-作用空間、より大きなスケール、スパース報酬を伴い、収束性、拡張性、およびソリューション空間の効率的な探索において大きな課題をもたらす。
グラフニューラルネットワーク(GNN)埋め込みを,動的環境を扱う上で不可欠な入力トークンと出力トークンの間に,新たな残差接続と統合した,新しい決定変換器(DT)アーキテクチャであるGNN-DTを紹介する。
これまでに収集された軌道から学習することで、GNN-DTは正確なシミュレータへの依存を減らし、オンラインRLアルゴリズムのスパース報酬制限に取り組む。
我々は、複雑な電気自動車(EV)の充電最適化問題に対するGNN-DTの評価を行い、その性能が優れていること、また、トレーニング軌跡を著しく少なくする必要があることを証明し、既存のDTベースラインと比較してサンプル効率を向上する。
さらに、GNN-DTは、未確認環境やより大きな行動空間への堅牢な一般化を示し、従来のDTベースのアプローチにおける重要なギャップに対処する。
関連論文リスト
- GDSG: Graph Diffusion-based Solution Generator for Optimization Problems in MEC Networks [109.17835015018532]
グラフ拡散型ソリューション生成(GDSG)法を提案する。
このアプローチは、おそらく最適な解に収束しながら、最適以下のデータセットを扱うように設計されている。
グラフニューラルネットワーク(GNN)を用いたマルチタスク拡散モデルとしてGDSGを構築し,高品質な解の分布を求める。
論文 参考訳(メタデータ) (2024-12-11T11:13:43Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
ディープラーニングは、タスクオフロードとリソース割り当てを最適化するために、モバイルエッジコンピューティング(MEC)でうまく採用されている。
エッジネットワークのダイナミクスは、低スケーラビリティと高トレーニングコストという、ニューラルネットワーク(NN)ベースの最適化方法における2つの課題を提起する。
本稿では,新たなリンクアウトプットGNN(LOGNN)ベースの資源管理手法を提案し,MECにおける資源割り当てを柔軟に最適化する。
論文 参考訳(メタデータ) (2023-06-15T08:21:41Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
双曲型PDEを含む前方および逆問題に対する特徴情報ニューラルネットワーク(CINN)を提案する。
CINNは、通常のMSEデータ適合回帰損失をトレーニングした汎用ディープニューラルネットワークにおいて、PDEの特性を符号化する。
予備的な結果は、CINNがベースラインPINNの精度を改善しつつ、トレーニングの約2倍の速さで非物理的解を回避できることを示している。
論文 参考訳(メタデータ) (2022-12-28T18:38:53Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
グラフニューラルネットワーク(GNN)はまだ探索中であり、その広範な採用に対する大きな違いを示している。
本稿では,多層ヘテロジニアスエッジネットワーク上での分散GNN処理のコスト最適化について検討する。
提案手法は, 高速収束速度で95.8%以上のコスト削減を行い, デファクトベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T13:03:16Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Leveraging power grid topology in machine learning assisted optimal
power flow [0.5076419064097734]
機械学習支援最適電力フロー(OPF)は、非線形および非制約電力フロー問題の計算複雑性を低減することを目的としている。
我々は,機械支援OPFの2つの基本的アプローチに対して,さまざまなFCNN,CNN,GNNモデルの性能を評価する。
相互接続されたユーティリティを持ついくつかの合成格子に対して,特徴変数と対象変数の間の局所性特性は乏しいことを示す。
論文 参考訳(メタデータ) (2021-10-01T10:39:53Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。