論文の概要: GP-GS: Gaussian Processes for Enhanced Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2502.02283v2
- Date: Wed, 05 Feb 2025 16:09:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:41.289317
- Title: GP-GS: Gaussian Processes for Enhanced Gaussian Splatting
- Title(参考訳): GP-GS:ガウス法を拡張したガウス法
- Authors: Zhihao Guo, Jingxuan Su, Shenglin Wang, Jinlong Fan, Jing Zhang, Liangxiu Han, Peng Wang,
- Abstract要約: 本稿では,スパースSfM点雲の適応的および不確実性誘導密度化を実現する新しい3次元再構成フレームワークを提案する。
このパイプラインは不確実性推定を利用して、高分散予測のプルーニングを導く。
合成および実世界のデータセットで行った実験は、提案フレームワークの有効性と実用性を検証する。
- 参考スコア(独自算出の注目度): 10.45038376276218
- License:
- Abstract: 3D Gaussian Splatting has emerged as an efficient photorealistic novel view synthesis method. However, its reliance on sparse Structure-from-Motion (SfM) point clouds consistently compromises the scene reconstruction quality. To address these limitations, this paper proposes a novel 3D reconstruction framework Gaussian Processes Gaussian Splatting (GP-GS), where a multi-output Gaussian Process model is developed to achieve adaptive and uncertainty-guided densification of sparse SfM point clouds. Specifically, we propose a dynamic sampling and filtering pipeline that adaptively expands the SfM point clouds by leveraging GP-based predictions to infer new candidate points from the input 2D pixels and depth maps. The pipeline utilizes uncertainty estimates to guide the pruning of high-variance predictions, ensuring geometric consistency and enabling the generation of dense point clouds. The densified point clouds provide high-quality initial 3D Gaussians to enhance reconstruction performance. Extensive experiments conducted on synthetic and real-world datasets across various scales validate the effectiveness and practicality of the proposed framework.
- Abstract(参考訳): 3Dガウススプラッティングは、効率的なフォトリアリスティックな新規ビュー合成法として登場した。
しかしながら、SfM(Structure-from-Motion)の点雲への依存は、シーン再構築の品質を常に損なう。
これらの制約に対処するために,多出力ガウス過程モデルを開発し,スパースSfM点雲の適応性と不確実性を考慮した密度化を実現する,新しい3次元再構成フレームワークであるGaussian Processes Gaussian Splatting (GP-GS)を提案する。
具体的には,GPに基づく予測を利用してSfM点群を適応的に拡張し,入力された2Dピクセルと深度マップから新しい候補点を推測する動的サンプリング・フィルタリングパイプラインを提案する。
このパイプラインは不確実性推定を利用して、高分散予測のプルーニングを誘導し、幾何的整合性を確保し、高密度点雲の生成を可能にする。
密度の高い点雲は、復元性能を高めるために高品質な初期3Dガウスを与える。
様々なスケールの合成および実世界のデータセットで実施された大規模な実験は、提案フレームワークの有効性と実用性を検証する。
関連論文リスト
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering [7.1029808965488686]
3D Gaussian Splatting (3D-GS)はリアルタイムで高品質な3Dシーンレンダリングにおいて大きな成功を収めた。
しかし、ガウスの冗長性、ビュー依存効果を捉える能力の制限、複雑な照明と反射の扱いの難しさなど、いくつかの課題に直面している。
PEP-GSは、不透明度、色、共分散を含むガウス属性を動的に予測する知覚的に強化されたフレームワークである。
論文 参考訳(メタデータ) (2024-11-08T17:42:02Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS)は、明示的なポイントクラウドと暗黙的な機能埋め込みを統合する革新的なハイブリッドモデルである。
本稿では,空間正規化を具体化したレベルベースプログレッシブトレーニング手法を提案する。
我々のアルゴリズムは、数MBしか使用せず、ストレージ効率とレンダリング忠実さを効果的にバランスして、高品質なレンダリングを実現することができる。
論文 参考訳(メタデータ) (2024-08-19T14:34:17Z) - LoopSparseGS: Loop Based Sparse-View Friendly Gaussian Splatting [18.682864169561498]
LoopSparseGSは、疎結合なビュー合成タスクのためのループベースの3DGSフレームワークである。
Sparse-Friended Smpling (SFS) 戦略を導入し,ガウス楕円体を過剰に処理し,画素誤差が大きくなった。
4つのデータセットの実験により、LoopSparseGSはスパース・インプット・ノベルビューの合成において既存の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-01T03:26:50Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
ニューラルネットワークSDFと3DGSを統合した統合フレームワークを提案する。
このフレームワークには学習可能なニューラルネットワークSDFフィールドが組み込まれており、ガウスの密度化と刈り取りをガイドしている。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T03:46:59Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。