論文の概要: SimSort: A Powerful Framework for Spike Sorting by Large-Scale Electrophysiology Simulation
- arxiv url: http://arxiv.org/abs/2502.03198v1
- Date: Wed, 05 Feb 2025 14:19:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:23:53.951182
- Title: SimSort: A Powerful Framework for Spike Sorting by Large-Scale Electrophysiology Simulation
- Title(参考訳): SimSort: 大規模電気生理学的シミュレーションによるスパイクソーティングのための強力なフレームワーク
- Authors: Yimu Zhang, Dongqi Han, Yansen Wang, Yu Gu, Dongsheng Li,
- Abstract要約: スパイクソートは神経記録において重要なプロセスであり、脳内の電極によって記録された個々のニューロンから電気信号を識別し、分離する。
textbfSimSortはスパイクソートのための事前学習フレームワークである。
注目すべきは、シミュレーションデータセットでトレーニングされた場合、SimSortは実世界のスパイクソートタスクに対して、ゼロショットの強い一般化を実証する。
- 参考スコア(独自算出の注目度): 23.201123508726155
- License:
- Abstract: Spike sorting is an essential process in neural recording, which identifies and separates electrical signals from individual neurons recorded by electrodes in the brain, enabling researchers to study how specific neurons communicate and process information. Although there exist a number of spike sorting methods which have contributed to significant neuroscientific breakthroughs, many are heuristically designed, making it challenging to verify their correctness due to the difficulty of obtaining ground truth labels from real-world neural recordings. In this work, we explore a data-driven, deep learning-based approach. We begin by creating a large-scale dataset through electrophysiology simulations using biologically realistic computational models. We then present \textbf{SimSort}, a pretraining framework for spike sorting. Remarkably, when trained on our simulated dataset, SimSort demonstrates strong zero-shot generalization to real-world spike sorting tasks, significantly outperforming existing methods. Our findings underscore the potential of data-driven techniques to enhance the reliability and scalability of spike sorting in experimental neuroscience.
- Abstract(参考訳): スパイクソートは神経記録において必須のプロセスであり、脳内の電極によって記録された個々のニューロンから電気信号を識別し、分離する。
神経科学的なブレークスルーに寄与するスパイクソート法はいくつか存在するが、多くはヒューリスティックに設計されており、現実の神経記録から基底真理ラベルを得るのが困難であるため、その正しさを検証することは困難である。
本研究では,データ駆動型,ディープラーニングに基づくアプローチについて検討する。
まず,生物現実的な計算モデルを用いた電気生理学シミュレーションによる大規模データセットの作成から始める。
次に、スパイクソートのための事前トレーニングフレームワークである \textbf{SimSort} を提示する。
注目すべきは、シミュレーションデータセットでトレーニングされた場合、SimSortは実世界のスパイクソートタスクに対して強力なゼロショットの一般化を示し、既存の手法よりも大幅に優れています。
実験神経科学におけるスパイクソーシングの信頼性とスケーラビリティを高めるためのデータ駆動技術の可能性を明らかにする。
関連論文リスト
- Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Deep Learning for real-time neural decoding of grasp [0.0]
本稿では,ニューラルネットワークの復号化のためのDeep Learningに基づく手法を提案する。
提案手法の主な目的は、これまでの神経科学知識に頼ることなく、最先端の復号精度を改善することである。
論文 参考訳(メタデータ) (2023-11-02T08:26:29Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - NeuSort: An Automatic Adaptive Spike Sorting Approach with Neuromorphic
Models [24.02427573873539]
スパイクソートは、ニューラルデータ処理における重要なステップである。
本研究ではニューロモルフィックモデルを用いた新しいオンラインスパイクソーターであるNeuSortを開発することを目的とする。
論文 参考訳(メタデータ) (2023-04-20T12:55:49Z) - Learnable latent embeddings for joint behavioral and neural analysis [3.6062449190184136]
CEBRAは、空間のマッピング、複雑なキネマティックな特徴の発見、視覚野からの自然映画の高速かつ高精度な復号化に利用できることを示す。
我々は、その精度を検証し、カルシウムと電気生理学の両方のデータセット、感覚と運動のタスク、そして種全体にわたる単純または複雑な振る舞いにその有用性を実証する。
論文 参考訳(メタデータ) (2022-04-01T19:19:33Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。