論文の概要: Deep Reinforcement Learning-Based Optimization of Second-Life Battery Utilization in Electric Vehicles Charging Stations
- arxiv url: http://arxiv.org/abs/2502.03412v1
- Date: Wed, 05 Feb 2025 17:50:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:26:28.057792
- Title: Deep Reinforcement Learning-Based Optimization of Second-Life Battery Utilization in Electric Vehicles Charging Stations
- Title(参考訳): 電気自動車充電ステーションにおける二次電池利用の深層強化学習による最適化
- Authors: Rouzbeh Haghighi, Ali Hassan, Van-Hai Bui, Akhtar Hussain, Wencong Su,
- Abstract要約: 本稿では,BESSを用いた電気自動車充電ステーションのための深層強化学習(DRL)計画フレームワークについて述べる。
我々は、季節変動を考慮した1年分のデータに基づいてモデルをトレーニングする、高度なソフトアクター・クリティカル(SAC)アプローチを採用する。
調整された報酬関数は効果的なオフライントレーニングを可能にし、不確実性の下でEVCS操作をリアルタイムに最適化することができる。
- 参考スコア(独自算出の注目度): 0.5033155053523042
- License:
- Abstract: The rapid rise in electric vehicle (EV) adoption presents significant challenges in managing the vast number of retired EV batteries. Research indicates that second-life batteries (SLBs) from EVs typically retain considerable residual capacity, offering extended utility. These batteries can be effectively repurposed for use in EV charging stations (EVCS), providing a cost-effective alternative to new batteries and reducing overall planning costs. Integrating battery energy storage systems (BESS) with SLBs into EVCS is a promising strategy to alleviate system overload. However, efficient operation of EVCS with integrated BESS is hindered by uncertainties such as fluctuating EV arrival and departure times and variable power prices from the grid. This paper presents a deep reinforcement learning-based (DRL) planning framework for EV charging stations with BESS, leveraging SLBs. We employ the advanced soft actor-critic (SAC) approach, training the model on a year's worth of data to account for seasonal variations, including weekdays and holidays. A tailored reward function enables effective offline training, allowing real-time optimization of EVCS operations under uncertainty.
- Abstract(参考訳): 電気自動車(EV)の急速な普及は、多くの引退したEVバッテリーを管理する上で大きな課題となっている。
研究によると、EVからの二次電池(SLB)は、通常かなりの余剰容量を保持し、拡張ユーティリティを提供する。
これらの電池は、EV充電ステーション(EVCS)での使用のために効果的に再利用することができ、新しい電池に代わる費用対効果を提供し、全体の計画コストを削減できる。
バッテリーエネルギー貯蔵システム(BESS)とSLBをEVCSに統合することは、システムの過負荷を軽減するための有望な戦略である。
しかしながら、EVCSとBESSを統合した効率的なEVCSの運用は、EVの到着時間や出発時間、グリッドからの可変電力価格などの不確実性によって妨げられる。
本稿では,BESSを用いた電気自動車充電ステーションのための深層強化学習(DRL)計画フレームワークについて述べる。
われわれは、SAC(Advanced soft actor-critic)アプローチを採用し、1年分のデータに基づいてモデルをトレーニングし、平日や休日を含む季節変動を考慮に入れている。
調整された報酬関数は効果的なオフライントレーニングを可能にし、不確実性の下でEVCS操作をリアルタイムに最適化することができる。
関連論文リスト
- Electric Vehicles coordination for grid balancing using multi-objective
Harris Hawks Optimization [0.0]
再生可能エネルギーの台頭は、地域グリッドのエネルギー収支に技術的および運用上の課題をもたらす電気自動車(EV)へのシフトと一致している。
複数のEVからグリッドへの電力フローの調整には、高度なアルゴリズムとロードバランシング戦略が必要である。
本稿では,安定した電力供給と安定したローカルグリッドの維持を目標として,一日のEVフリート調整モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T15:50:37Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - MARL for Decentralized Electric Vehicle Charging Coordination with V2V
Energy Exchange [5.442116840518914]
本稿では、車両間エネルギー交換(V2V)を考慮したEV充電調整について述べる。
本稿では,EV充電とV2Vエネルギー交換を協調するマルチエージェント強化学習(MARL)手法を提案する。
論文 参考訳(メタデータ) (2023-08-27T14:06:21Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
マルチエージェント深部強化学習(MADRL)はEV充電制御において有効であることが証明されている。
既存のMADRLベースのアプローチでは、配電ネットワークにおけるEV充電/放電の自然な電力フローを考慮できない。
本稿では,マルチEV充電/放電と最適電力流で動作する放射分布ネットワーク(RDN)を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T05:34:46Z) - Transfer Deep Reinforcement Learning-based Large-scale V2G Continuous
Charging Coordination with Renewable Energy Sources [5.99526159525785]
再生可能エネルギーと電力グリッドの安定性を高めるため,V2G技術と大規模スケジューリングアルゴリズムを開発した。
本稿では, 連続充電/放電協調戦略のための深部強化学習法を提案する。
論文 参考訳(メタデータ) (2022-10-13T13:21:55Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply [2.6066825041242367]
EVルーティングに強化学習(RL)を用いたQuikRouteFinderを提案する。
RLの結果は混合整数線形プログラム(MILP)と遺伝的アルゴリズム(GA)のメタヒューリスティックスに基づく正確な定式化と比較される。
論文 参考訳(メタデータ) (2022-04-12T06:13:06Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
バッテリーと太陽光発電システムのコストの低下は、ソーラーバッテリーの家庭用システムの増加に繋がった。
本研究では,システム内の電池の充電および放電挙動を最適化するために,深い決定論的ポリシーアルゴリズムを用いる。
論文 参考訳(メタデータ) (2021-09-10T10:59:14Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。