論文の概要: Increasing the distance of topological codes with time vortex defects
- arxiv url: http://arxiv.org/abs/2502.12236v1
- Date: Mon, 17 Feb 2025 19:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:46.389689
- Title: Increasing the distance of topological codes with time vortex defects
- Title(参考訳): 時間渦欠陥を伴う位相符号の距離の増大
- Authors: Gilad Kishony, Erez Berg,
- Abstract要約: 時間渦という時空欠陥を組み込んだ量子誤り訂正符号の修正を提案する。
コードを定義する周期的な測定シーケンスに空間的に異なる遅延を加えることにより、時間渦を挿入する。
最小のVortexコード($30$ qubits)は、Vortexフリーコードを42$ qubitsで上回っていることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose modifying topological quantum error correcting codes by incorporating space-time defects, termed ``time vortices,'' to reduce the number of physical qubits required to achieve a desired logical error rate. A time vortex is inserted by adding a spatially varying delay to the periodic measurement sequence defining the code such that the delay accumulated on a homologically non-trivial cycle is an integer multiple of the period. We analyze this construction within the framework of the Floquet color code and optimize the embedding of the code on a torus along with the choice of the number of time vortices inserted in each direction. Asymptotically, the vortexed code requires less than half the number of qubits as the vortex-free code to reach a given code distance. We benchmark the performance of the vortexed Floquet color code by Monte Carlo simulations with a circuit-level noise model and demonstrate that the smallest vortexed code (with $30$ qubits) outperforms the vortex-free code with $42$ qubits.
- Abstract(参考訳): 所望の論理的誤り率を達成するのに必要な物理量子ビットの数を削減するため、時空の欠陥「時渦」を組み込むことで位相的量子誤り訂正符号の修正を提案する。
ホモロジー的に非自明なサイクルに蓄積された遅延が周期の整数倍となるような符号を定義する周期測定シーケンスに空間的に変化した遅延を加えて、時間渦を挿入する。
この構造をフロケットカラーコードのフレームワーク内で解析し、トーラスへのコードの埋め込みを最適化し、各方向に挿入される時間渦の数を選択する。
漸近的に、渦付き符号は与えられた符号距離に達するために渦フリー符号の半分未満の量子ビットを必要とする。
我々は,モンテカルロシミュレーションによるフレケットカラーコードの性能を回路レベルのノイズモデルで評価し,最小の渦付きコード(30$ qubits)が42$ qubitsの渦フリーコードより優れていることを示す。
関連論文リスト
- Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Fault-Tolerant Belief Propagation for Practical Quantum Memory [6.322831694506286]
信頼性量子メモリに対するフォールトトレラントなアプローチは、スケーラブルな量子コンピューティングには不可欠である。
本稿では,複数ラウンドのシンドローム抽出と混合アルファベット誤差変数を用いた時空間タナーグラフを用いたデコーダを提案する。
シミュレーションでは,0.4%-0.87%のエラーしきい値とトポロジカルコード群に対する強いエラーフロア性能を示す。
論文 参考訳(メタデータ) (2024-09-27T12:21:45Z) - Quantum error correction below the surface code threshold [107.92016014248976]
量子誤り訂正は、複数の物理量子ビットを論理量子ビットに結合することで、実用的な量子コンピューティングに到達するための経路を提供する。
本研究では, リアルタイムデコーダと統合された距離7符号と距離5符号の2つの面符号メモリを臨界閾値以下で動作させる。
以上の結果から,大規模なフォールトトレラント量子アルゴリズムの動作要件を実現する装置の性能が示唆された。
論文 参考訳(メタデータ) (2024-08-24T23:08:50Z) - Error Correction in Dynamical Codes [1.6317061277457001]
我々は、一連の測定で定義される量子エラー訂正符号の一般的な枠組みを問う。
本研究では,このプロトコルを用いてエラーシンドロームに関する情報を追跡し,動的コードの距離を決定するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-03-07T02:47:21Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Fault-tolerant hyperbolic Floquet quantum error correcting codes [0.0]
ハイパボリックフロケット符号」と呼ばれる動的に生成された量子誤り訂正符号の族を導入する。
私たちの双曲的フロッケ符号の1つは、コード距離8の52の論理キュービットをエンコードするために400の物理キュービットを使用します。
小さなエラー率では、この符号に匹敵する論理的誤り抑制は、同じノイズモデルとデコーダを持つハニカム・フロケ符号を使用する場合、多くの物理量子ビット (1924) の5倍を必要とする。
論文 参考訳(メタデータ) (2023-09-18T18:00:02Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
リアルタイム量子計算は、ノイズの多い量子ハードウェアによって生成されたデータのストリームから論理的な結果を取り出すことができる復号アルゴリズムを必要とする。
本稿では,デコーディングの精度を犠牲にすることなく,最小限の追加通信でこの問題に対処できるモジュールデコーディングを提案する。
本稿では,格子探索型耐故障ブロックのモジュールデコーディングの具体例であるエッジ頂点分解について紹介する。
論文 参考訳(メタデータ) (2023-03-08T19:26:10Z) - Ising model formulation for highly accurate topological color codes
decoding [0.9002260638342727]
量子誤り訂正符号の1つであるトポロジカルカラー符号は、すべてのクリフォードゲートを横方向に実装できるという点で、表面符号に対して有利である。
そこで本研究では,カラーコードの高精度デコードを可能にするIsingモデルの定式化を提案する。
論文 参考訳(メタデータ) (2023-03-02T15:28:08Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Low-overhead quantum error correction codes with a cyclic topology [0.0]
非隣り合うデータ量子ビットに絡み合ったアンシラを持つ補正符号の量子回路を構築する方法を示す。
改良されたルックアップテーブルデコーダによってサポートされているニューラルネットワークベースのデコードアルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-11-06T12:22:23Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
複数のコードサイズにわたる論理量子ビット性能のスケーリングの測定について報告する。
超伝導量子ビット系は、量子ビット数の増加による追加誤差を克服するのに十分な性能を有する。
量子誤り訂正は量子ビット数が増加するにつれて性能が向上し始める。
論文 参考訳(メタデータ) (2022-07-13T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。