論文の概要: Riemannian Variational Flow Matching for Material and Protein Design
- arxiv url: http://arxiv.org/abs/2502.12981v2
- Date: Thu, 02 Oct 2025 17:48:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 14:32:17.055002
- Title: Riemannian Variational Flow Matching for Material and Protein Design
- Title(参考訳): 材料・タンパク質設計のためのリーマン変分流マッチング
- Authors: Olga Zaghen, Floor Eijkelboom, Alison Pouplin, Cong Liu, Max Welling, Jan-Willem van de Meent, Erik J. Bekkers,
- Abstract要約: ユークリッド空間では、予測終点(VFM)、速度(FM)、ノイズ(拡散)はアフィンによってほぼ同値である。
曲線多様体上では、この同値性は崩壊し、終点予測がより強い学習信号を与えるという仮説を立てる。
この知見に基づいて、変動フローマッチングの目的を導出する。
合成球面および双曲型ベンチマークの実験は、物質やタンパク質の生成における実世界のタスクと同様に、RG-VFMがより効果的に多様体構造を捉えることを実証している。
- 参考スコア(独自算出の注目度): 37.328940532069424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Riemannian Gaussian Variational Flow Matching (RG-VFM), a geometric extension of Variational Flow Matching (VFM) for generative modeling on manifolds. In Euclidean space, predicting endpoints (VFM), velocities (FM), or noise (diffusion) are largely equivalent due to affine interpolations. On curved manifolds this equivalence breaks down, and we hypothesize that endpoint prediction provides a stronger learning signal by directly minimizing geodesic distances. Building on this insight, we derive a variational flow matching objective based on Riemannian Gaussian distributions, applicable to manifolds with closed-form geodesics. We formally analyze its relationship to Riemannian Flow Matching (RFM), exposing that the RFM objective lacks a curvature-dependent penalty - encoded via Jacobi fields - that is naturally present in RG-VFM. Experiments on synthetic spherical and hyperbolic benchmarks, as well as real-world tasks in material and protein generation, demonstrate that RG-VFM more effectively captures manifold structure and improves downstream performance over Euclidean and velocity-based baselines.
- Abstract(参考訳): 本稿では、多様体上の生成モデリングのための変分フローマッチング(VFM)の幾何学的拡張であるリーマンガウス変分フローマッチング(RG-VFM)を提案する。
ユークリッド空間では、予測終点(VFM)、速度(FM)、ノイズ(拡散)はアフィン補間によりほぼ同値である。
曲線多様体上では、この同値性は崩壊し、測地線距離を直接最小化することで、終点予測がより強力な学習信号を与えるという仮説を立てる。
この知見に基づいて、閉形式の測地線を持つ多様体に適用可能なリーマンガウス分布に基づく変分フローマッチングの目的を導出する。
我々は, RG-VFM に自然に存在する RFM の曲率依存的なペナルティが存在しないことを明らかにするために, Remannian Flow Matching (RFM) との関係を公式に解析した。
合成球面および双曲型ベンチマークの実験は、物質およびタンパク質生成における実世界のタスクと同様に、RG-VFMがより効果的に多様体構造を捕捉し、ユークリッドおよび速度ベースラインの下流性能を向上させることを実証している。
関連論文リスト
- Riemannian Denoising Diffusion Probabilistic Models [7.964790563398277]
関数のレベル集合であるユークリッド空間の部分多様体上の分布を学習するためのRDDPMを提案する。
連続時間限界における手法の理論解析を行う。
提案手法は,過去の研究から得られたデータセットと,新しいサンプルデータセットで実証された。
論文 参考訳(メタデータ) (2025-05-07T11:37:16Z) - RMLR: Extending Multinomial Logistic Regression into General Geometries [64.16104856124029]
我々のフレームワークは、最小限の幾何学的性質しか必要とせず、広い適用性を示す。
SPD MLRの5つのファミリーを5種類のパワー変形測定値に基づいて開発する。
回転行列上では、人気のある双不変計量に基づいてリー MLR を提案する。
論文 参考訳(メタデータ) (2024-09-28T18:38:21Z) - Sigma Flows for Image and Data Labeling and Learning Structured Prediction [2.4699742392289]
本稿では,リーマン多様体上で観測されたデータの構造化ラベル付け予測のためのシグマフローモデルを提案する。
このアプローチは、約25年前にSochen、Kimmel、Malladiが導入したイメージデノナイズとエンハンスメントのためのLaplace-Beltramiフレームワークと、著者らが導入し研究した代入フローアプローチを組み合わせたものだ。
論文 参考訳(メタデータ) (2024-08-28T17:04:56Z) - Categorical Flow Matching on Statistical Manifolds [12.646272756981672]
本稿では,情報幾何学に着想を得たパラメータ化確率尺度の多様体上でのフローマッチングフレームワークを提案する。
我々は,多様体間の微分同相法により数値安定性を克服する効率的なトレーニングとサンプリングアルゴリズムを開発した。
我々は、SFMが、既存のモデルがしばしば失敗するような統計多様体上でより複雑なパターンを学習できることを示した。
論文 参考訳(メタデータ) (2024-05-26T05:50:39Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - A Geometric Insight into Equivariant Message Passing Neural Networks on
Riemannian Manifolds [1.0878040851638]
座標独立な特徴体に付随する計量は、主バンドルの原計量を最適に保存すべきである。
一定の時間ステップで拡散方程式の流れを離散化することにより, 多様体上のメッセージパッシング方式を得る。
グラフ上の高次拡散過程の離散化は、同変 GNN の新しい一般クラスをもたらす。
論文 参考訳(メタデータ) (2023-10-16T14:31:13Z) - Manifold Diffusion Fields [11.4726574705951]
非ユークリッド幾何学におけるデータ拡散モデルの学習を解き放つアプローチを提案する。
ラプラス・ベルトラミ作用素の固有関数を通して多様体上の固有座標系を定義する。
我々はMDFが従来の手法よりも多様性と忠実さでそのような関数の分布を捉えることができることを示す。
論文 参考訳(メタデータ) (2023-05-24T21:42:45Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - Equivariant Manifold Flows [48.21296508399746]
等変多様体フローを通じて任意の多様体上の対称性不変分布を学習するための理論的基礎を置く。
量子場理論の文脈で、SU(n)$以上のゲージ不変密度を学習するためにこの手法の実用性を実証する。
論文 参考訳(メタデータ) (2021-07-19T03:04:44Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。