論文の概要: Meshless Shape Optimization using Neural Networks and Partial Differential Equations on Graphs
- arxiv url: http://arxiv.org/abs/2502.14821v1
- Date: Thu, 20 Feb 2025 18:42:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:26:27.632033
- Title: Meshless Shape Optimization using Neural Networks and Partial Differential Equations on Graphs
- Title(参考訳): ニューラルネットワークとグラフ部分微分方程式を用いたメッシュレス形状最適化
- Authors: Eloi Martinet, Leon Bungert,
- Abstract要約: 我々は、ニューラルネットワークを利用してレベルセット関数をパラメータ化し、グラフラプラシアンを用いて基礎となるPDEを近似する、完全なメッシュレスなレベルセットフレームワークを提案する。
提案手法は,曲面正規度や曲率などの幾何量の正確な計算が可能であり,凸形状のクラス内での最適化問題に対処することができる。
- 参考スコア(独自算出の注目度): 1.3812010983144802
- License:
- Abstract: Shape optimization involves the minimization of a cost function defined over a set of shapes, often governed by a partial differential equation (PDE). In the absence of closed-form solutions, one relies on numerical methods to approximate the solution. The level set method -- when coupled with the finite element method -- is one of the most versatile numerical shape optimization approaches but still suffers from the limitations of most mesh-based methods. In this work, we present a fully meshless level set framework that leverages neural networks to parameterize the level set function and employs the graph Laplacian to approximate the underlying PDE. Our approach enables precise computations of geometric quantities such as surface normals and curvature, and allows tackling optimization problems within the class of convex shapes.
- Abstract(参考訳): 形状最適化は、一組の形状上で定義されるコスト関数の最小化を伴い、しばしば偏微分方程式(PDE)によって支配される。
閉形式解がない場合、解を近似する数値的な方法に依存する。
レベルセット法は、有限要素法と組み合わせることで、最も多用途な数値形状最適化手法の1つであるが、それでもほとんどのメッシュベースの手法の限界に悩まされている。
本研究では、ニューラルネットワークを利用してレベルセット関数をパラメータ化し、グラフラプラシアンを用いて基礎となるPDEを近似する、完全なメッシュレスなレベルセットフレームワークを提案する。
提案手法は,曲面正規度や曲率などの幾何量の正確な計算が可能であり,凸形状のクラス内で最適化問題に取り組むことができる。
関連論文リスト
- Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - $r-$Adaptive Deep Learning Method for Solving Partial Differential
Equations [0.685316573653194]
本稿では,Deep Neural Network を用いて部分微分方程式を解くための$r-$adaptiveアルゴリズムを提案する。
提案手法は, テンソル積メッシュに制限され, 境界ノードの位置を1次元で最適化し, そこから2次元または3次元メッシュを構築する。
論文 参考訳(メタデータ) (2022-10-19T21:38:46Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Consistent Approximations in Composite Optimization [0.0]
我々は最適化問題の一貫した近似のためのフレームワークを開発する。
このフレームワークは幅広い最適化のために開発されている。
プログラム解析法は、拡張非線形プログラミングソリューションを例証する。
論文 参考訳(メタデータ) (2022-01-13T23:57:08Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Constrained and Composite Optimization via Adaptive Sampling Methods [3.4219044933964944]
本論文の動機は,制約付き最適化問題を解くための適応サンプリング手法を開発することにある。
本論文で提案する手法は、f が凸(必ずしも微分可能ではない)である合成最適化問題 min f(x) + h(x) にも適用できる近位勾配法である。
論文 参考訳(メタデータ) (2020-12-31T02:50:39Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z) - Geometry, Computation, and Optimality in Stochastic Optimization [24.154336772159745]
問題幾何学の計算および統計的結果とオンライン最適化について検討する。
制約集合と勾配幾何学に焦点をあてて、どの次法と適応次法が最適(minimax)であるかという問題族を特徴づける。
論文 参考訳(メタデータ) (2019-09-23T16:14:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。