論文の概要: A Permutation-equivariant Deep Learning Model for Quantum State Characterization
- arxiv url: http://arxiv.org/abs/2502.15305v1
- Date: Fri, 21 Feb 2025 08:56:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 19:42:32.745587
- Title: A Permutation-equivariant Deep Learning Model for Quantum State Characterization
- Title(参考訳): 量子状態解析のための置換同変深層学習モデル
- Authors: Diego Maragnano, Marco Liscidini, Claudio Cusano,
- Abstract要約: 量子状態のキャラクタリゼーションは、量子技術のあらゆる応用の基本的なステップである。
置換等価なディープラーニングモデルとtQSTプロトコルを組み合わせる方法について述べる。
- 参考スコア(独自算出の注目度): 1.9010580518869415
- License:
- Abstract: The characterization of quantum states is a fundamental step of any application of quantum technologies. Nowadays there exist several approaches addressing this problem, also based on machine and deep learning techniques. However, all these approaches usually require a number of measurement that scales exponentially with the number of parties composing the system. Threshold quantum state tomography (tQST) addresses this problem and, in some cases of interest, can significantly reduce the number of measurements. In this paper, we study how to combine a permutation-equivariant deep learning model with the tQST protocol. We test the model on quantum state tomography and purity estimation. Finally, we validate the robustness of the model to noise. We show results up to 4 qubits.
- Abstract(参考訳): 量子状態の特徴づけは、量子技術のあらゆる応用の基本的なステップである。
今日では、機械学習やディープラーニングの技術にもとづいて、この問題に対処するアプローチがいくつか存在する。
しかしながら、これらすべてのアプローチは、通常、システムを構成するパーティの数と指数関数的にスケールする多数の測定を必要とする。
Threshold quantum state tomography (tQST)はこの問題に対処し、興味のある場合には測定回数を大幅に削減することができる。
本稿では,置換等価な深層学習モデルとtQSTプロトコルを組み合わせる方法について検討する。
我々は、量子状態トモグラフィーと純度推定のモデルをテストする。
最後に、モデルがノイズに対して頑健であることを検証する。
結果が4キュービットまで表示されます。
関連論文リスト
- Simultaneous estimations of quantum state and detector through multiple quantum processes [4.782967012381978]
複数の量子プロセスを用いて、量子状態と検出器を同時に識別するフレームワークを2つの異なるベースで導入する。
平均二乗誤差 (MSE) が QST と QDT の両方に対して$O(1/N) であることを示す。
論文 参考訳(メタデータ) (2025-02-17T13:02:36Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
多体局在は、量子多体物理学の非常に難しい現象である。
計算コストの高いステップを回避できるフレキシブルニューラルネットワークベースの学習手法を提案する。
我々のアプローチは、量子多体物理学の新たな洞察を提供するために、大規模な量子実験に適用することができる。
論文 参考訳(メタデータ) (2022-02-17T19:00:09Z) - Quantum verification and estimation with few copies [63.669642197519934]
大規模絡み合ったシステムの検証と推定は、信頼性の高い量子情報処理にそのようなシステムを用いる際の大きな課題の1つである。
本稿では,資源の一定数(サンプリング複雑性)に着目し,任意の次元のシステムに適していることを示す。
具体的には、量子状態トモグラフィー(quantum state tomography)の概念とともに、エンタングルメント検出のために少なくとも1つのコピーだけを必要とする確率的フレームワークをレビューする。
論文 参考訳(メタデータ) (2021-09-08T18:20:07Z) - Variational quantum process tomography [12.843681115589122]
我々は、未知のユニタリ量子プロセスを比較的浅い深さパラメトリック量子回路に符号化する量子機械学習アルゴリズムを提唱した。
その結果、これらの量子プロセスは高い忠実度で再構成可能である一方で、必要な入力状態の数は、標準量子プロセストモグラフィーで要求されるよりも少なくとも2ドル以下であることがわかった。
論文 参考訳(メタデータ) (2021-08-05T03:36:26Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
本稿では,量子状態の説明と識別を行う数値的に安価な手法を提案する。
エンタングルメントの構造が異なる量子状態を特徴付けるのに十分であることを示す。
本手法は、多体量子磁気システムにおいて、異なる性質の相転移を検出するために用いられる。
論文 参考訳(メタデータ) (2021-07-21T06:22:35Z) - Direct Fidelity Estimation of Quantum States using Machine Learning [8.306287613158094]
ほとんど全ての量子アプリケーションにおいて、重要なステップの1つは、準備された量子状態の忠実度が期待を満たすことを検証することである。
本稿では,機械学習技術を用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-04T02:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。