論文の概要: Spontaneous Giving and Calculated Greed in Language Models
- arxiv url: http://arxiv.org/abs/2502.17720v3
- Date: Wed, 21 May 2025 16:04:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:57.716213
- Title: Spontaneous Giving and Calculated Greed in Language Models
- Title(参考訳): 言語モデルにおける自発的なギビングと計算的欲求
- Authors: Yuxuan Li, Hirokazu Shirado,
- Abstract要約: 大規模言語モデルは、チェーン・オブ・ソート・プロンプトやリフレクションのような推論技術を通じて、強力な問題解決能力を示す。
社会ジレンマをシミュレートする経済ゲームを用いて,この問題を考察する。
推論モデルは、協調と規範の強制を一貫して減らし、個人の合理性を支持する。
- 参考スコア(独自算出の注目度): 5.754869099304775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models demonstrate strong problem-solving abilities through reasoning techniques such as chain-of-thought prompting and reflection. However, it remains unclear whether these reasoning capabilities extend to a form of social intelligence: making effective decisions in cooperative contexts. We examine this question using economic games that simulate social dilemmas. First, we apply chain-of-thought and reflection prompting to GPT-4o in a Public Goods Game. We then evaluate multiple off-the-shelf models across six cooperation and punishment games, comparing those with and without explicit reasoning mechanisms. We find that reasoning models consistently reduce cooperation and norm enforcement, favoring individual rationality. In repeated interactions, groups with more reasoning agents exhibit lower collective gains. These behaviors mirror human patterns of "spontaneous giving and calculated greed." Our findings underscore the need for LLM architectures that incorporate social intelligence alongside reasoning, to help address--rather than reinforce--the challenges of collective action.
- Abstract(参考訳): 大規模言語モデルは、チェーン・オブ・ソート・プロンプトやリフレクションのような推論技術を通じて、強力な問題解決能力を示す。
しかし、これらの推論能力が社会知能の一形態に拡張されるかどうかは不明であり、協調的な文脈で効果的な意思決定を行うことである。
社会ジレンマをシミュレートする経済ゲームを用いて,この問題を考察する。
まず,公共グッズゲームにおける GPT-4o の連鎖とリフレクションを応用する。
次に、6つの協力ゲームと罰ゲームにまたがる複数のオフ・ザ・シェルフモデルを評価し、明示的な推論機構と非明示的な推論機構を比較した。
推論モデルは、協調と規範の強制を一貫して減らし、個人の合理性を支持する。
反復的な相互作用では、より多くの推論エージェントを持つグループはより低い集団利得を示す。
これらの行動は「自発的な授与と計算された欲求」の人間のパターンを反映している。
我々の発見は、社会的知性と推論を兼ね備えたLLMアーキテクチャが、集団行動の課題である強化ではなく、対処を助けることの必要性を浮き彫りにしている。
関連論文リスト
- Social Genome: Grounded Social Reasoning Abilities of Multimodal Models [61.88413918026431]
ソーシャルゲノム(Social Genome)は、マルチモーダルモデルのきめ細かいきめ細やかな社会的推論能力を示す最初のベンチマークである。
相互作用の272のビデオと、これらの相互作用に関する推論に関連する1,486人の注釈付き推論トレースを含んでいる。
社会ゲノムはまた、社会的推論における外部知識を研究するための最初のモデリング課題である。
論文 参考訳(メタデータ) (2025-02-21T00:05:40Z) - The Danger of Overthinking: Examining the Reasoning-Action Dilemma in Agentic Tasks [96.27754404942364]
大規模推論モデル(LRM)は、AI問題解決能力の突破口となるが、インタラクティブ環境での有効性は制限される可能性がある。
本稿では, LRMにおける過度な考察を紹介し, 分析する。
解析的麻痺,ローグ行動,早期解離の3つのパターンを観察した。
論文 参考訳(メタデータ) (2025-02-12T09:23:26Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、効率の改善にもかかわらず、その計算要求はモデルの性能よりも速く増加するため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - AI and Social Theory [0.0]
我々は、人工知能(AI)が意味するものを定義することから始まる、AI駆動型社会理論のプログラムをスケッチする。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
論文 参考訳(メタデータ) (2024-07-07T12:26:16Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Language-based game theory in the age of artificial intelligence [0.6187270874122921]
感情分析は、経済的な結果を超えた人間の行動を説明することができることを示す。
我々のメタ分析は、感情分析が経済的な結果を超えた人間の行動を説明することができることを示している。
この研究が、人間の決定における言語の重要性を強調する新しいゲーム理論アプローチの舞台となることを願っている。
論文 参考訳(メタデータ) (2024-03-13T20:21:20Z) - Visual cognition in multimodal large language models [12.603212933816206]
近年の進歩は、人間のような認知能力をエミュレートする可能性への関心を再燃させた。
本稿では、直観物理学、因果推論、直観心理学の分野における視覚に基づく大規模言語モデルの現状を評価する。
論文 参考訳(メタデータ) (2023-11-27T18:58:34Z) - UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations [62.71847873326847]
異常、予期せぬ、そしてありそうもない状況をモデル化する能力について検討する。
予期せぬ結果のコンテキストが与えられた場合、このタスクは説明を生成するために故意に推論する必要がある。
私たちはUNcommonsenseという新しい英語コーパスをリリースします。
論文 参考訳(メタデータ) (2023-11-14T19:00:55Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs [77.88043871260466]
私たちは、今日の最大の言語モデルのひとつに、このようなソーシャルインテリジェンスを最初から欠いていることを示しています。
我々は、人中心のNLPアプローチは、マインドの神経理論に対してより効果的であるかもしれないと結論づける。
論文 参考訳(メタデータ) (2022-10-24T14:58:58Z) - Cognitive Models as Simulators: The Case of Moral Decision-Making [9.024707986238392]
本研究では,AIシステムと対話し,人間の代わりに認知モデルからフィードバックを収集することを目的としたシミュレータとして,$textitcognitive Modelのアイデアを裏付ける。
ここでは、ウルティマトゥムゲーム(UG)の認知モデルと相互作用することで、強化学習エージェントに公正さについて学ばせることにより、道徳的意思決定の文脈でこの考え方を活用する。
我々の研究は、人間のシミュレーターとして認知モデルを使用することがAIシステムのトレーニングに効果的なアプローチであり、AIに貢献するための計算認知科学の重要な方法を提供することを示唆している。
論文 参考訳(メタデータ) (2022-10-08T23:14:14Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は,競争行動の社会的影響に基づく新しい強化学習機構を提案する。
提案モデルでは, 人工エージェントの学習を調節するための競合スコアを導出するために, 客観的, 社会的認知的メカニズムを集約する。
論文 参考訳(メタデータ) (2022-08-22T14:06:06Z) - Modeling Human Behavior Part I -- Learning and Belief Approaches [0.0]
探索とフィードバックを通じて行動のモデルや方針を学ぶ手法に焦点を当てる。
次世代の自律的適応システムは、主にAIエージェントと人間がチームとして一緒に働く。
論文 参考訳(メタデータ) (2022-05-13T07:33:49Z) - Learning Human Rewards by Inferring Their Latent Intelligence Levels in
Multi-Agent Games: A Theory-of-Mind Approach with Application to Driving Data [18.750834997334664]
我々は、人間は有理論的であり、他人の意思決定過程を推論する際に異なる知能レベルを持っていると論じる。
学習中の人間の潜在知能レベルを推論する,新しいマルチエージェント逆強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-07T07:48:31Z) - Multi-Principal Assistance Games [11.85513759444069]
社会的選択論や投票理論における不合理性定理はそのようなゲームに適用できる。
我々は特に、人間がまず腕の好みを示すために行動するバンディットの見習いゲームを分析する。
本稿では,選好推論と社会福祉最適化を組み合わせるために,システムの共有制御を用いた社会的選択手法を提案する。
論文 参考訳(メタデータ) (2020-07-19T00:23:25Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。