論文の概要: No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
- arxiv url: http://arxiv.org/abs/2501.18563v1
- Date: Thu, 30 Jan 2025 18:36:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:26.408712
- Title: No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
- Title(参考訳): 方程式は不要:クローズドフォーム ODE を使わずにシステムダイナミクスを学習する
- Authors: Krzysztof Kacprzyk, Mihaela van der Schaar,
- Abstract要約: 本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
- 参考スコア(独自算出の注目度): 56.78271181959529
- License:
- Abstract: Data-driven modeling of dynamical systems is a crucial area of machine learning. In many scenarios, a thorough understanding of the model's behavior becomes essential for practical applications. For instance, understanding the behavior of a pharmacokinetic model, constructed as part of drug development, may allow us to both verify its biological plausibility (e.g., the drug concentration curve is non-negative and decays to zero) and to design dosing guidelines. Discovery of closed-form ordinary differential equations (ODEs) can be employed to obtain such insights by finding a compact mathematical equation and then analyzing it (a two-step approach). However, its widespread use is currently hindered because the analysis process may be time-consuming, requiring substantial mathematical expertise, or even impossible if the equation is too complex. Moreover, if the found equation's behavior does not satisfy the requirements, editing it or influencing the discovery algorithms to rectify it is challenging as the link between the symbolic form of an ODE and its behavior can be elusive. This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process. Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system (i.e., description of its behavior) directly from data, bypassing the need for complex post-hoc analysis. This direct approach also allows the incorporation of intuitive inductive biases into the optimization algorithm and editing the model's behavior directly, ensuring that the model meets the desired specifications. Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models compared to traditional closed-form ODEs.
- Abstract(参考訳): 動的システムのデータ駆動モデリングは機械学習の重要な領域である。
多くのシナリオにおいて、モデルの振る舞いを徹底的に理解することは、実践的な応用に不可欠である。
例えば、薬物開発の一部として構築された薬物動態モデルの挙動を理解することで、その生物学的妥当性(例えば、薬物濃度曲線は非負でゼロに崩壊する)を検証し、服用ガイドラインを設計することができる。
閉形式常微分方程式(ODE)の発見は、コンパクトな数学的方程式を発見して解析することで、そのような洞察を得るために用いられる(二段階のアプローチ)。
しかし、解析プロセスが時間がかかり、数学的な専門知識が必要か、あるいは方程式が複雑すぎると不可能になる可能性があるため、現在広く使われていることは妨げられている。
さらに、検出された方程式の振舞いが要求を満たさない場合、それを編集したり、発見アルゴリズムに修正を与える場合、ODEのシンボル形式とその振舞いのリンクが解き放たれるため、困難である。
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
閉形式方程式を最初に発見し、分析する代わりに、我々のアプローチである直接意味モデリングは、データから直接力学系の意味表現(つまり、その振る舞いの説明)を予測し、複雑なポストホック解析の必要性を回避します。
この直接的なアプローチは、最適化アルゴリズムに直感的な帰納バイアスを組み込むことができ、モデルの振る舞いを直接編集することで、モデルが望ましい仕様を満たすことを保証する。
我々のアプローチは、モデリングパイプラインを単純化するだけでなく、従来のクローズドフォームODEと比較して、結果モデルの透明性と柔軟性を向上させる。
関連論文リスト
- ICODE: Modeling Dynamical Systems with Extrinsic Input Information [14.521146920900316]
モデルの学習過程に,正確なリアルタイム入力情報を組み込んだ入力共役ニューラルネットワーク(ICODE)を導入する。
いくつかの代表的実動力学の実験を通して本手法を検証する。
この研究は、明示的な外部入力情報で物理的システムを理解するための貴重なニューラルネットワークODEモデルのクラスを提供する。
論文 参考訳(メタデータ) (2024-11-21T07:57:59Z) - Physically Analyzable AI-Based Nonlinear Platoon Dynamics Modeling During Traffic Oscillation: A Koopman Approach [4.379212829795889]
物理的アナライザビリティを同時に達成しつつ、高精度なモデリング手法が不可欠である。
本稿では,AIのパワーを利用した未知の非線形プラトン力学をモデル化するためのAIベースのクープマン手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T19:35:21Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
GAM(Generalized Additive Models)は、変数とターゲットの間の非線形関係をキャプチャできるが、複雑な特徴相互作用をキャプチャすることはできない。
本稿では,GAMのフレキシブルな形状関数と,数学的表現に見られる複雑な特徴相互作用を融合させる形状表現算術(SHARE)を提案する。
また、標準制約を超えた表現の透明性を保証するSHAREを構築するための一連のルールを設計する。
論文 参考訳(メタデータ) (2024-04-15T13:44:01Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Discrepancy Modeling Framework: Learning missing physics, modeling
systematic residuals, and disambiguating between deterministic and random
effects [4.459306403129608]
現代の力学系では、モデルと測定の相違は量子化の低下につながる。
本稿では,欠落した物理を識別し,モデル-測定ミスマッチを解消するための不一致モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-10T05:37:24Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
機械学習と辞書ベースの学習を数値解析ツールと組み合わせ,微分方程式の制御を探索する。
我々は、サンプリング体制を超えてよりよく一般化しやすい解釈可能で準同型モデルを得る。
生物ネットワークに通常現れる有理非線形性を含む支配方程式の拡張について論じる。
論文 参考訳(メタデータ) (2021-05-11T08:46:51Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
トレーニング中のODEの終了時刻をランダムにサンプリングする新しい正規化手法を提案する。
提案された正規化は実装が簡単で、オーバーヘッドを無視でき、様々なタスクで有効である。
本稿では,フローの正規化,時系列モデル,画像認識などの実験を通じて,提案した正規化がトレーニング時間を大幅に短縮し,ベースラインモデルよりも性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-06-18T17:44:50Z) - Data-Driven Discovery of Coarse-Grained Equations [0.0]
マルチスケールモデリングとシミュレーションは、シミュレーションデータの学習がそのような発見につながる2つの分野である。
我々は、そのようなモデルの人間の発見を、2つのモードで実行できるスパース回帰に基づく機械学習戦略に置き換える。
一連の例は、方程式発見に対する我々のアプローチの正確性、堅牢性、限界を示している。
論文 参考訳(メタデータ) (2020-01-30T23:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。