論文の概要: High-fidelity Multiphysics Modelling for Rapid Predictions Using Physics-informed Parallel Neural Operator
- arxiv url: http://arxiv.org/abs/2502.19543v1
- Date: Wed, 26 Feb 2025 20:29:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:55:39.540363
- Title: High-fidelity Multiphysics Modelling for Rapid Predictions Using Physics-informed Parallel Neural Operator
- Title(参考訳): 物理インフォームド並列ニューラル演算子を用いた高速予測のための高忠実多物理モデリング
- Authors: Biao Yuan, He Wang, Yanjie Song, Ana Heitor, Xiaohui Chen,
- Abstract要約: 非線形および強く結合した偏微分方程式(PDE)によって支配される複雑な多物理系をモデル化することは、計算科学と工学の基盤となる。
本稿では、スケーラブルで教師なしの学習フレームワークであるPIPNO(Physical-informed parallel neural operator)を提案する。
PIPNOは、地球工学、物質科学、電磁気学、量子力学、流体力学など、様々な物理学における非線形作用素のマッピングを効率的に取得する。
- 参考スコア(独自算出の注目度): 17.85837423448985
- License:
- Abstract: Modelling complex multiphysics systems governed by nonlinear and strongly coupled partial differential equations (PDEs) is a cornerstone in computational science and engineering. However, it remains a formidable challenge for traditional numerical solvers due to high computational cost, making them impractical for large-scale applications. Neural operators' reliance on data-driven training limits their applicability in real-world scenarios, as data is often scarce or expensive to obtain. Here, we propose a novel paradigm, physics-informed parallel neural operator (PIPNO), a scalable and unsupervised learning framework that enables data-free PDE modelling by leveraging only governing physical laws. The parallel kernel integration design, incorporating ensemble learning, significantly enhances both compatibility and computational efficiency, enabling scalable operator learning for nonlinear and strongly coupled PDEs. PIPNO efficiently captures nonlinear operator mappings across diverse physics, including geotechnical engineering, material science, electromagnetism, quantum mechanics, and fluid dynamics. The proposed method achieves high-fidelity and rapid predictions, outperforming existing operator learning approaches in modelling nonlinear and strongly coupled multiphysics systems. Therefore, PIPNO offers a powerful alternative to conventional solvers, broadening the applicability of neural operators for multiphysics modelling while ensuring efficiency, robustness, and scalability.
- Abstract(参考訳): 非線形および強く結合した偏微分方程式(PDE)によって支配される複雑な多物理系をモデル化することは、計算科学と工学の基盤となる。
しかし、計算コストが高いため、従来の数値解法では深刻な課題であり、大規模アプリケーションでは実用的ではない。
データ駆動トレーニングへのニューラルオペレータの依存は、実際のシナリオにおける適用性を制限している。
本稿では,物理法則のみを活用することにより,データフリーなPDEモデリングを可能にするスケーラブルで教師なし学習フレームワークであるPIPNOを提案する。
並列カーネル統合設計は、アンサンブル学習を取り入れ、互換性と計算効率を大幅に向上させ、非線形および強く結合されたPDEに対するスケーラブルな演算子学習を可能にする。
PIPNOは、地球工学、物質科学、電磁気学、量子力学、流体力学など、様々な物理学における非線形作用素のマッピングを効率的に取得する。
提案手法は, 非線形および強結合多物理系のモデル化において, 既存の演算子学習手法より優れ, 高精度かつ高速な予測を実現する。
したがって、PIPNOは従来の解法に代わる強力な代替手段を提供し、効率、堅牢性、スケーラビリティを確保しつつ、多物理モデリングのためのニューラル演算子の適用性を広げる。
関連論文リスト
- Pseudo-Physics-Informed Neural Operators: Enhancing Operator Learning from Limited Data [17.835190275166408]
PPI-NO(Pseudo Physics-Informed Neural Operator)フレームワークを提案する。
PPI-NOは、基本微分作用素から導かれる偏微分方程式(PDE)を用いて、対象系に対する代理物理系を構築する。
このフレームワークは,データ共有シナリオにおける標準演算子学習モデルの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2025-02-04T19:50:06Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Nonlinear Schrödinger Network [0.8249694498830558]
ディープニューラルネットワーク(DNN)は、大規模データセットから複雑な非線形マッピングを学習することで、様々な分野において例外的なパフォーマンスを実現している。
これらの問題に対処するため、物理学とAIを統合するハイブリッドアプローチが注目されている。
本稿では,非線形シュリンガーネットワーク(Nonlinear Schr"odinger Network)と呼ばれる物理に基づく新しいAIモデルを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:00Z) - An Advanced Physics-Informed Neural Operator for Comprehensive Design Optimization of Highly-Nonlinear Systems: An Aerospace Composites Processing Case Study [0.0]
本稿では,複数の入力関数を持つ複雑なシステムに適した物理インフォームドDeepONetを提案する。
提案モデルでは,高精度な高次元設計空間を処理し,バニラ物理インフォームドDeepONetを2桁の精度で上回っている。
論文 参考訳(メタデータ) (2024-06-20T20:19:30Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - A foundational neural operator that continuously learns without
forgetting [1.0878040851638]
本稿では,科学計算の基礎モデルとしてNeural Combinatorial Wavelet Neural Operator (NCWNO) の概念を紹介する。
NCWNOは、物理学の様々なスペクトルから学習し、パラメトリック偏微分方程式(PDE)に関連する解作用素に継続的に適応するように特別に設計されている。
提案した基礎モデルには、2つの大きな利点がある: (i) 複数のパラメトリックPDEに対する解演算子を同時に学習し、 (ii) 極小調整の少ない新しいパラメトリックPDEに素早く一般化できる。
論文 参考訳(メタデータ) (2023-10-29T03:20:10Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Multiscale Neural Operator: Learning Fast and Grid-independent PDE
Solvers [0.0]
大規模力学をシミュレーションするために、既知の物理を生かしたハイブリッド・フレキシブル・サロゲートモデルを提案する。
グリッド非依存、非ローカル、フレキシブルなパラメトリゼーションを学ぶのは、私たちが初めてです。
論文 参考訳(メタデータ) (2022-07-23T05:01:03Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。