論文の概要: Multiscale Neural Operator: Learning Fast and Grid-independent PDE
Solvers
- arxiv url: http://arxiv.org/abs/2207.11417v1
- Date: Sat, 23 Jul 2022 05:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 13:47:48.349434
- Title: Multiscale Neural Operator: Learning Fast and Grid-independent PDE
Solvers
- Title(参考訳): マルチスケールニューラル演算子:高速かつグリッドに依存しないPDE解を学習する
- Authors: Bj\"orn L\"utjens, Catherine H. Crawford, Campbell D Watson,
Christopher Hill, Dava Newman
- Abstract要約: 大規模力学をシミュレーションするために、既知の物理を生かしたハイブリッド・フレキシブル・サロゲートモデルを提案する。
グリッド非依存、非ローカル、フレキシブルなパラメトリゼーションを学ぶのは、私たちが初めてです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulations in climate, chemistry, or astrophysics are
computationally too expensive for uncertainty quantification or
parameter-exploration at high-resolution. Reduced-order or surrogate models are
multiple orders of magnitude faster, but traditional surrogates are inflexible
or inaccurate and pure machine learning (ML)-based surrogates too data-hungry.
We propose a hybrid, flexible surrogate model that exploits known physics for
simulating large-scale dynamics and limits learning to the hard-to-model term,
which is called parametrization or closure and captures the effect of fine-
onto large-scale dynamics. Leveraging neural operators, we are the first to
learn grid-independent, non-local, and flexible parametrizations. Our
\textit{multiscale neural operator} is motivated by a rich literature in
multiscale modeling, has quasilinear runtime complexity, is more accurate or
flexible than state-of-the-art parametrizations and demonstrated on the chaotic
equation multiscale Lorenz96.
- Abstract(参考訳): 気候、化学、天体物理学の数値シミュレーションは、不確実な定量化や高解像度でのパラメータ探索には計算に高すぎる。
ダウンオーダーまたはサロゲートモデルは桁違いに高速だが、従来のサロゲートは非フレキシブルまたは不正確であり、純粋な機械学習(ML)ベースのサロゲートはデータ不足を多用する。
本研究では, 大規模力学をシミュレートするために既知の物理を応用し, パラメトリゼーション (parametrization) やクロージャ (closure) と呼ばれるハード・トゥ・モデル用語への学習を制限するハイブリッド・フレキシブル・サーロゲートモデルを提案する。
ニューラルネットワークを活用することで、グリッド非依存、非ローカル、柔軟なパラメータ化を学びました。
我々の \textit{multiscale neural operator} は、マルチスケールモデリングの豊富な文献に動機づけられ、準線形ランタイム複雑性を持ち、最先端のパラメトリゼーションよりも正確または柔軟であり、カオス方程式のマルチスケールロレンツ96で実証されている。
関連論文リスト
- Projected Neural Differential Equations for Learning Constrained Dynamics [3.570367665112327]
本稿では,学習ベクトル場の射影を制約多様体の接空間に向けることで,ニューラル微分方程式を制約する新しい手法を提案する。
PNDEは、ハイパーパラメータを少なくしながら、既存のメソッドよりも優れています。
提案手法は、制約付き力学系のモデリングを強化する重要な可能性を示す。
論文 参考訳(メタデータ) (2024-10-31T06:32:43Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
複素測地上での高次非線形微分方程式の多スケールおよび多物理集合に対するパラメータ化時空間サロゲートモデルを作成するために、Latent Dynamics Networks(LDNets)の拡張を提案する。
LFLDNetは、時間的ダイナミクスのために神経学的にインスパイアされたスパースな液体ニューラルネットワークを使用し、時間進行のための数値ソルバの要求を緩和し、パラメータ、精度、効率、学習軌道の点で優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-08-19T09:14:25Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。