論文の概要: AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review
- arxiv url: http://arxiv.org/abs/2503.00079v2
- Date: Tue, 04 Mar 2025 17:01:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:53.623646
- Title: AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review
- Title(参考訳): K-12におけるAIリテラシーと生成AIのウェイクにおける高等教育:統合的レビュー
- Authors: Xingjian Gu, Barbara J. Ericson,
- Abstract要約: AIリテラシーの介入について議論し、設計する方法については、研究者や実践者の間ではほとんど合意がない。
本稿では,2020年以降に出版された実証的および理論的AIリテラシー研究の検証に,統合的レビュー手法を適用した。
- 参考スコア(独自算出の注目度): 3.5297361401370044
- License:
- Abstract: Even though AI literacy has emerged as a prominent education topic in the wake of generative AI, its definition remains vague. There is little consensus among researchers and practitioners on how to discuss and design AI literacy interventions. The term has been used to describe both learning activities that train undergraduate students to use ChatGPT effectively and having kindergarten children interact with social robots. This paper applies an integrative review method to examine empirical and theoretical AI literacy studies published since 2020. In synthesizing the 124 reviewed studies, three ways to conceptualize literacy-functional, critical, and indirectly beneficial-and three perspectives on AI-technical detail, tool, and sociocultural-were identified, forming a framework that reflects the spectrum of how AI literacy is approached in practice. The framework highlights the need for more specialized terms within AI literacy discourse and indicates research gaps in certain AI literacy objectives.
- Abstract(参考訳): AIリテラシーは、生成的AIの結果として、顕著な教育トピックとして現れてきたが、その定義はあいまいである。
AIリテラシーの介入について議論し、設計する方法については、研究者や実践者の間ではほとんど合意がない。
この用語は、大学生がChatGPTを効果的に活用するよう訓練する学習活動と、幼稚園児が社会ロボットと対話することの両方に使われてきた。
本稿では,2020年以降に出版された実証的および理論的AIリテラシー研究の検証に,統合的レビュー手法を適用した。
124のレビュー研究の合成において、リテラシーを機能的、批判的、間接的に有益な3つの視点と、AI技術の詳細、ツール、社会文化の3つの視点が特定され、AIリテラシーの実践的アプローチのスペクトルを反映したフレームワークを形成する。
このフレームワークは、AIリテラシーにおける専門用語の必要性を強調し、特定のAIリテラシー目標における研究ギャップを示す。
関連論文リスト
- A Conceptual Exploration of Generative AI-Induced Cognitive Dissonance and its Emergence in University-Level Academic Writing [0.0]
本研究は,認知不協和(CD)のトリガーおよび増幅器として,生成人工知能(GenAI)が果たす役割について考察する。
我々は、AI駆動の効率と、独創性、努力、知的所有権の原則との緊張を浮き彫りにして、GenAIによるCDの仮説的構成を導入する。
我々は、この不協和を緩和するための戦略について議論する。例えば、反射的教育、AIリテラシープログラム、GenAI使用の透明性、規律固有のタスク再設計などである。
論文 参考訳(メタデータ) (2025-02-08T21:31:04Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
本研究では、偏見がAIと人為的コンテンツの知覚をどう形成するかを考察する。
ラベル付きおよびラベルなしコンテンツに対するヒトのラッカーの反応について検討した。
論文 参考訳(メタデータ) (2024-09-29T04:31:45Z) - AI Literacy for All: Adjustable Interdisciplinary Socio-technical Curriculum [0.8879149917735942]
本稿では,AIの学際的理解を促進するカリキュラム「AI Literacy for All」を提案する。
本稿では、AIリテラシーの4つの柱として、AIのスコープと技術的側面を理解すること、知識と責任のある方法でGen-AIと対話する方法を学ぶこと、倫理と責任のあるAIの社会技術的問題、そしてAIの社会的および将来の意味について述べる。
論文 参考訳(メタデータ) (2024-09-02T13:13:53Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Techniques for supercharging academic writing with generative AI [0.0]
このパースペクティブは、生成的人工知能(AI)を用いた学術著作の質と効率を高めるための原則と方法を示す。
我々は、書面におけるAIの関与の根拠(なぜ)、プロセス(方法)、そして自然(何)を明確にする人間とAIの協調フレームワークを紹介します。
論文 参考訳(メタデータ) (2023-10-26T04:35:00Z) - Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism' [0.0]
本研究は,AIと盗作を包含する学問的不正行為の創発的形態である,AI-giarismに対する学生の認識を探求する。
この発見は、AIコンテンツ生成に対する明確な不承認を伴う、複雑な理解の風景を描いている。
この研究は、学術、政策立案、そして教育におけるAI技術のより広範な統合に関する重要な洞察を提供する。
論文 参考訳(メタデータ) (2023-06-06T02:22:08Z) - MAILS -- Meta AI Literacy Scale: Development and Testing of an AI
Literacy Questionnaire Based on Well-Founded Competency Models and
Psychological Change- and Meta-Competencies [6.368014180870025]
アンケートはモジュラー(すなわち、互いに独立して使用できる異なるファセットを含む)であり、プロフェッショナルな生活に柔軟に適用できるべきである。
我々は、AIリテラシーの異なる側面を表すために、Ngと同僚がAIリテラシーを概念化した60項目を作成した。
AIに関する問題解決、学習、感情制御などの心理的能力を表す12項目が追加されている。
論文 参考訳(メタデータ) (2023-02-18T12:35:55Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。