論文の概要: Byzantine Distributed Function Computation
- arxiv url: http://arxiv.org/abs/2503.01522v2
- Date: Mon, 10 Mar 2025 06:59:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:38:51.961993
- Title: Byzantine Distributed Function Computation
- Title(参考訳): ビザンチン分散関数計算
- Authors: Hari Krishnan P. Anilkumar, Neha Sangwan, Varun Narayanan, Vinod M. Prabhakaran,
- Abstract要約: 分散関数計算問題を$k$のユーザで検討し、少なくとも$s$は敵によって制御される可能性がある。
ユーザーが正直に振る舞うと、その機能は高い確率で回収される。
逆向きに振る舞うと、関数は驚くほど小さな歪みで復元される。
- 参考スコア(独自算出の注目度): 7.532756762622666
- License:
- Abstract: We study the distributed function computation problem with $k$ users of which at most $s$ may be controlled by an adversary and characterize the set of functions of the sources the decoder can reconstruct robustly in the following sense -- if the users behave honestly, the function is recovered with high probability (w.h.p.); if they behave adversarially, w.h.p, either one of the adversarial users will be identified or the function is recovered with vanishingly small distortion.
- Abstract(参考訳): 我々は、$k$の分散関数計算問題を、少なくとも$s$が敵によって制御され、デコーダが次の意味で頑健に再構築できる情報源の関数の集合を特徴づける: ユーザーが正直に振る舞うと、その関数は高い確率で回収される(w.h.p.)。
関連論文リスト
- On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents [58.79302663733703]
大規模言語モデルに基づくマルチエージェントシステムは、専門家エージェントの協力により、様々なタスクにまたがる優れた能力を示している。
しかし、不器用なエージェントや悪意のあるエージェントがシステム全体のパフォーマンスに与える影響は、まだ解明されていない。
本稿では, 種々のシステム構造の耐震性について考察する。
論文 参考訳(メタデータ) (2024-08-02T03:25:20Z) - Improving Diffusion Models's Data-Corruption Resistance using Scheduled Pseudo-Huber Loss [5.539965805440292]
本稿では,アウトレーヤに頑健でありながら,生成したデータの高品質な保存が可能な拡散損失関数を提案する。
時間依存パラメータによる擬似ハッカ損失は、画像領域と音声領域の両方で劣化したデータセットに対してより良い性能を示すことを示す。
論文 参考訳(メタデータ) (2024-03-25T13:02:43Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
分散エージェントのネットワークによって達成可能な性能を導出し,通信制約や回帰問題を解消し,適応的に解決する。
エージェントによって最適化に必要なパラメータをオンラインで学習できる最適化アロケーション戦略を考案する。
論文 参考訳(メタデータ) (2023-04-07T13:41:08Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Impact of Redundancy on Resilience in Distributed Optimization and
Learning [4.664766612388049]
本稿では,サーバアーキテクチャにおける分散最適化と学習のレジリエンスの問題について考察する。
システムはサーバと複数のエージェントから構成され、各エージェントは独自のローカルコスト関数を持つ。
局所コスト関数が十分冗長であることを考えると、実際に$(f, r; epsilon)$-レジリエンスが達成できることが示される。
論文 参考訳(メタデータ) (2022-11-16T02:23:34Z) - Beyond the Return: Off-policy Function Estimation under User-specified
Error-measuring Distributions [8.881195152638986]
オフ・ポリティィ・アセスメント(英語: Off-policy Evaluation)は、政策の期待された回帰を推定し、その価値関数を推定する2つの関連するタスクを指す。
疎外化重要度サンプリングの目的に対して適切な正則化を課すことにより、実現可能性のみの下での非政治機能推定の保証を提供する。
論文 参考訳(メタデータ) (2022-10-27T15:34:17Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - Utilizing Redundancy in Cost Functions for Resilience in Distributed
Optimization and Learning [1.8414221462731502]
本稿では,サーバアーキテクチャにおけるレジリエントな分散最適化と機械学習の問題について考察する。
システムはサーバと複数のエージェントから構成され、各エージェントはローカルなコスト関数を持つ。
エージェントのいくつかが非同期で、/またはビザンティンの欠陥がある場合を考えます。
論文 参考訳(メタデータ) (2021-10-21T02:41:19Z) - Detecting Security Fixes in Open-Source Repositories using Static Code
Analyzers [8.716427214870459]
機械学習(ML)アプリケーションにおけるコミットを表現する機能として,既製の静的コードアナライザの出力がどの程度使用されるかを検討する。
埋め込みの構築やMLモデルをトレーニングして、脆弱性修正を含むソースコードコミットを自動的に識別する方法について検討する。
当社のメソッドとcommit2vecの組み合わせは,脆弱性を修正するコミットの自動識別において,最先端技術よりも明確な改善であることがわかった。
論文 参考訳(メタデータ) (2021-05-07T15:57:17Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。