論文の概要: Bounding the computational power of bosonic systems
- arxiv url: http://arxiv.org/abs/2503.03600v1
- Date: Wed, 05 Mar 2025 15:33:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 17:18:41.175473
- Title: Bounding the computational power of bosonic systems
- Title(参考訳): ボゾン系の計算力の境界
- Authors: Varun Upreti, Ulysse Chabaud,
- Abstract要約: 古典的コンピュータ上では指数時間で普遍ボソニック量子計算をシミュレートできることを示す。
また,その離散変数に対するボゾン量子コンピュータの指数計算的優位性を支持する論証も提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic quantum systems operate in an infinite-dimensional Hilbert space, unlike discrete-variable quantum systems. This distinct mathematical structure leads to fundamental differences in quantum information processing, such as an exponentially greater complexity of state tomography [MMB+24] or a factoring algorithm in constant space [BCCRK24]. Yet, it remains unclear whether this structural difference of bosonic systems may also translate to a practical computational advantage over finite-dimensional quantum computers. Here we take a step towards answering this question by showing that universal bosonic quantum computations can be simulated in exponential time on a classical computer, significantly improving the best previous upper bound requiring exponential memory [CJMM24]. In complexity-theoretic terms, we improve the best upper bound on $\textsf{CVBQP}$ from $\textsf{EXPSPACE}$ to $\textsf{EXP}$. This result is achieved using a simulation strategy based on finite energy cutoffs and approximate coherent state decompositions. While we propose ways to potentially refine this bound, we also present arguments supporting the plausibility of an exponential computational advantage of bosonic quantum computers over their discrete-variable counterparts. Furthermore, we emphasize the role of circuit energy as a resource and discuss why it may act as the fundamental bottleneck in realizing this advantage in practical implementations.
- Abstract(参考訳): ボソニック量子系は、離散変数量子系とは異なり、無限次元ヒルベルト空間で動作する。
この異なる数学的構造は、状態トモグラフィ[MMB+24]の指数的に大きい複雑さや定数空間におけるファクタリングアルゴリズム[BCCRK24]のような量子情報処理の根本的な違いをもたらす。
しかし、このボソニック系の構造的違いが有限次元量子コンピュータよりも現実的な計算上の優位性にも寄与するかどうかは不明である。
ここでは、古典的コンピュータ上での指数時間で普遍的なボゾン量子計算がシミュレート可能であることを示すことにより、この問題に対処するための一歩を踏み出した。
複雑性理論の用語では、$\textsf{CVBQP}$を$\textsf{EXPSPACE}$から$\textsf{EXP}$に改善する。
この結果は、有限エネルギーカットオフと近似コヒーレント状態分解に基づくシミュレーション戦略を用いて達成される。
この境界線を改良する方法を提案する一方で、ボゾン量子コンピュータの指数計算的優位性が離散変数よりも高いことを支持する論証も提示する。
さらに,回路エネルギーが資源として果たす役割を強調し,実装においてこの優位性を実現する上での基本的なボトルネックとして機能する可能性についても論じる。
関連論文リスト
- Quantum Circuit for Non-Unitary Linear Transformation of Basis Sets [4.289769713465494]
本稿では、量子計算プラットフォームに基づく基底の非単項線形変換を実装するための新しいアプローチを提案する。
Singular Value Decomposition (SVD) をプロセスに統合することにより、約$O(n)$の操作深度を約$n$ ancilla qubitsで達成する。
複雑な量子状態や現象のより深い探索を可能にし、物理学や化学における量子コンピューティングの実践的応用を拡大する。
論文 参考訳(メタデータ) (2025-02-13T04:55:51Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
本研究は, 量子コンピュータ上での一般相対論的非弾性散乱過程の位相シフトを求めるアルゴリズムの開発を報告する。
論文 参考訳(メタデータ) (2024-07-04T21:11:05Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
線形応答によって支配される異なる反応を記述することに関連する応答関数の量子アルゴリズムについて検討する。
我々は原子核物理学の応用に焦点をあて、格子上の量子ビット効率のマッピングを検討し、現実的な散乱シミュレーションに必要な大量の量を効率的に表現することができる。
論文 参考訳(メタデータ) (2024-03-30T00:21:46Z) - Efficient Representation of Gaussian Fermionic Pure States in Non-Computational Bases [0.0]
本稿では、量子スピン系とフェルミオンモデルにおいて中心となるガウスフェルミオン状態を表現する革新的なアプローチを紹介する。
我々は、これらの状態が従来の計算基底(シグマズ)から(phi, fracpi2, α)のようなより複雑な基底へ遷移することに焦点を当てる。
本稿では,基底変換を単純化するだけでなく,計算複雑性を低減させる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-05T19:43:33Z) - Towards Quantum Computational Mechanics [1.530480694206666]
本稿では、量子コンピューティングを用いて、計算ホモジェナイゼーションにおける代表要素体積(RVE)問題を解く方法について述べる。
我々の量子RVE解法は古典解法に対して指数加速度を得る。
論文 参考訳(メタデータ) (2023-12-06T12:53:02Z) - Low-rank tensor decompositions of quantum circuits [14.531461873576449]
我々はMPOを用いて量子状態、量子ゲート、量子回路全体を低ランクテンソルとして表現する方法を示す。
これにより、古典コンピュータ上の複雑な量子回路の解析とシミュレーションが可能になる。
論文 参考訳(メタデータ) (2022-05-19T22:09:15Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
我々は、不定因果構造を持つ量子計算の定式化を開発する。
我々は高階量子マップの計算構造を特徴付ける。
計算的および情報理論的な性質を持つこれらの規則は、量子システム間のシグナル伝達関係のより物理的概念によって決定される。
論文 参考訳(メタデータ) (2022-02-21T13:43:50Z) - Quantum Causal Unravelling [44.356294905844834]
我々は,多部量子プロセスにおける相互作用の因果構造を明らかにするための,最初の効率的な方法を開発した。
我々のアルゴリズムは、量子プロセストモグラフィーの技法で効率的に特徴付けることができるプロセスを特定するのに利用できる。
論文 参考訳(メタデータ) (2021-09-27T16:28:06Z) - Computing Free Energies with Fluctuation Relations on Quantum Computers [0.0]
本稿では,ジャジンスキー等式(Jarzynski equality)と呼ばれるゆらぎ関係を利用して,量子コンピュータ上の量子系の自由エネルギー差を近似するアルゴリズムを提案する。
実量子プロセッサ上での逆場Isingモデルを用いて,アルゴリズムの概念実証に成功した。
論文 参考訳(メタデータ) (2021-03-17T18:14:19Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Efficient simulatability of continuous-variable circuits with large
Wigner negativity [62.997667081978825]
ウィグナー負性性は、いくつかの量子計算アーキテクチャにおいて計算上の優位性に必要な資源であることが知られている。
我々は、大きく、おそらくは有界で、ウィグナー負性を示し、しかし古典的に効率的にシミュレートできる回路の広大な族を同定する。
我々は,高次元離散可変量子回路のシミュラビリティとボソニック符号とのリンクを確立することにより,本結果の導出を行う。
論文 参考訳(メタデータ) (2020-05-25T11:03:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。