論文の概要: POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
- arxiv url: http://arxiv.org/abs/2503.07819v1
- Date: Mon, 10 Mar 2025 20:01:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:17:45.505794
- Title: POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
- Title(参考訳): POp-GS:P-Optimalityを用いた3D-Gaussian Splattingの次のベストビュー
- Authors: Joey Wilson, Marcelino Almeida, Sachit Mahajan, Martin Labrie, Maani Ghaffari, Omid Ghasemalizadeh, Min Sun, Cheng-Hao Kuo, Arnab Sen,
- Abstract要約: 3D-GSは計算精度の高い有用な世界モデルであることが証明されているが、不確実性は定量化されていない。
P-最適性により3D-GS内で得られた不確実性と情報の定量化のための新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.023303901740753
- License:
- Abstract: In this paper, we present a novel algorithm for quantifying uncertainty and information gained within 3D Gaussian Splatting (3D-GS) through P-Optimality. While 3D-GS has proven to be a useful world model with high-quality rasterizations, it does not natively quantify uncertainty. Quantifying uncertainty in parameters of 3D-GS is necessary to understand the information gained from acquiring new images as in active perception, or identify redundant images which can be removed from memory due to resource constraints in online 3D-GS SLAM. We propose to quantify uncertainty and information gain in 3D-GS by reformulating the problem through the lens of optimal experimental design, which is a classical solution to measuring information gain. By restructuring information quantification of 3D-GS through optimal experimental design, we arrive at multiple solutions, of which T-Optimality and D-Optimality perform the best quantitatively and qualitatively as measured on two popular datasets. Additionally, we propose a block diagonal approximation of the 3D-GS uncertainty, which provides a measure of correlation for computing more accurate information gain, at the expense of a greater computation cost.
- Abstract(参考訳): 本稿では,P-Optimalityによる3次元ガウス散乱(3D-GS)内で得られた不確実性と情報の定量化のための新しいアルゴリズムを提案する。
3D-GSは高品質なラスタ化を持つ有用な世界モデルであることが証明されているが、不確実性は本質的に定量化されていない。
3D-GSのパラメータの不確かさの定量化は、新しい画像の取得から得られる情報をアクティブな知覚として理解したり、オンライン3D-GS SLAMのリソース制約によりメモリから除去できる冗長な画像を識別するために必要である。
本稿では,3D-GSにおける不確実性と情報ゲインの定量化について,情報ゲイン測定の古典的解法である最適な実験設計のレンズを用いて問題を修正することを提案する。
最適な実験設計により3D-GSの情報量化を再構築することにより、T-OptimalityとD-Optimalityが2つの一般的なデータセットで測定されるように、最も定量的かつ質的に機能する複数のソリューションに到達する。
また、3D-GSの不確実性のブロック対角近似を提案し、より正確な情報ゲインの相関を計算コストを犠牲にして算出する。
関連論文リスト
- CDGS: Confidence-Aware Depth Regularization for 3D Gaussian Splatting [5.8678184183132265]
CDGSは3DGSを強化するために開発された信頼性を考慮した深度正規化手法である。
我々は,単眼深度推定のマルチキュー信頼マップと,運動深度からのスパース構造を適応的に調整するために活用する。
本手法は,初期訓練段階における幾何ディテールの保存性を向上し,NVSの品質と幾何精度の両面での競争性能を実現する。
論文 参考訳(メタデータ) (2025-02-20T16:12:13Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - Geometric Transformation Uncertainty for Improving 3D Fetal Brain Pose Prediction from Freehand 2D Ultrasound Videos [0.8579241568505183]
2次元胎児脳画像における3次元面の自動位置決めのための不確実性を考慮した深層学習モデルを提案する。
提案手法であるQAERTSは、現状や不確実性に基づくアプローチよりも優れたポーズ推定精度を示す。
論文 参考訳(メタデータ) (2024-05-21T22:42:08Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3Dは3Dシーン理解モデルの信頼性をベンチマークし精査する先駆的な試みである。
10の異なる3Dデータセットにまたがる28の最先端モデルを総合的に評価する。
本稿では,3次元モデルのキャリブレーション向上を目的とした,深度対応のスケーリング手法であるDeptSを紹介する。
論文 参考訳(メタデータ) (2024-03-25T17:59:59Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
本稿では,ポイントクラウドに基づく不整合予測を緩和する3次元高調波損失関数を提案する。
提案手法はベンチマークモデルよりも性能が大幅に向上する。
私たちのコードはオープンソースで公開されています。
論文 参考訳(メタデータ) (2022-11-07T10:11:48Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
2Dイメージプロジェクションから3Dシーンを推論することは、コンピュータビジョンにおける中核的な問題の一つだ。
我々の研究は、よく知られた微分可能な定式化とランダムなスムーズなレンダリングの関連性を強調している。
提案手法を3次元シーン再構成に適用し,その利点を6次元ポーズ推定と3次元メッシュ再構成の課題に適用した。
論文 参考訳(メタデータ) (2021-10-18T08:56:23Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。