論文の概要: Neural Network Approach to Stochastic Dynamics for Smooth Multimodal Density Estimation
- arxiv url: http://arxiv.org/abs/2503.17807v1
- Date: Sat, 22 Mar 2025 16:17:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:43.956412
- Title: Neural Network Approach to Stochastic Dynamics for Smooth Multimodal Density Estimation
- Title(参考訳): 滑らかなマルチモーダル密度推定のための確率力学へのニューラルネットワークによるアプローチ
- Authors: Z. Zarezadeh, N. Zarezadeh,
- Abstract要約: 我々は、事前条件行列の固有性をランダム行列としてモデル化することで、メトロポリス調整ランゲヴィン拡散アルゴリズムを適用できる。
提案手法は, 統計モデルの局所構造の幾何を活用・適応するために, 提案密度を調整するための完全適応機構を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we consider a new probability sampling methods based on Langevin diffusion dynamics to resolve the problem of existing Monte Carlo algorithms when draw samples from high dimensional target densities. We extent Metropolis-Adjusted Langevin Diffusion algorithm by modelling the stochasticity of precondition matrix as a random matrix. An advantage compared to other proposal method is that it only requires the gradient of log-posterior. The proposed method provides fully adaptation mechanisms to tune proposal densities to exploits and adapts the geometry of local structures of statistical models. We clarify the benefits of the new proposal by modelling a Quantum Probability Density Functions of a free particle in a plane (energy Eigen-functions). The proposed model represents a remarkable improvement in terms of performance accuracy and computational time over standard MCMC method.
- Abstract(参考訳): 本稿では,Langevin拡散力学に基づく新しい確率サンプリング手法を提案する。
我々は、事前条件行列の確率性をランダム行列としてモデル化することにより、メトロポリス調整ランゲヴィン拡散アルゴリズムを適用できる。
他の提案手法と比較して利点は、ログポストの勾配のみを必要とすることである。
提案手法は, 統計モデルの局所構造の幾何を活用・適応するために, 提案密度を調整するための完全適応機構を提供する。
平面中の自由粒子(エネルギー固有関数)の量子確率密度関数をモデル化することにより,新しい提案の利点を明らかにする。
提案モデルでは,標準MCMC法よりも性能精度と計算時間を向上した。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Proximal Interacting Particle Langevin Algorithms [0.0]
本稿では,潜時変動モデルにおける推論と学習のためのPIPLAアルゴリズムを提案する。
非微分不可能な統計モデルにおけるパラメータ推定の問題に合わせた、新しい近位IPLAファミリー内のいくつかの変種を提案する。
我々の理論と実験は、PIPLAファミリーが非微分可能モデルの潜在変数モデルにおけるパラメータ推定問題のデファクト選択であることを示している。
論文 参考訳(メタデータ) (2024-06-20T13:16:41Z) - Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections [0.7614628596146602]
雑音データから低次元ダイナミクスを抽出する低次元ベクトル自己回帰モデルを提案する。
最適斜め分解は、予測誤差の共分散に関する最良の予測可能性のために導出される。
合成ロレンツシステムとイーストマンケミカルの工業プロセスのデータセットを用いて,提案手法の優れた性能と効率を実証した。
論文 参考訳(メタデータ) (2024-01-14T05:38:10Z) - Momentum Particle Maximum Likelihood [2.4561590439700076]
自由エネルギー関数を最小化するための類似の力学系に基づくアプローチを提案する。
システムを離散化することにより、潜在変数モデルにおける最大推定のための実用的なアルゴリズムを得る。
このアルゴリズムは既存の粒子法を数値実験で上回り、他のMLEアルゴリズムと比較する。
論文 参考訳(メタデータ) (2023-12-12T14:53:18Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
偏微分方程式モデルにおけるデータ同化とパラメータ推定のためのモデル逆アルゴリズムCKLEMAPを提案する。
CKLEMAP法は標準的なMAP法に比べてスケーラビリティがよい。
論文 参考訳(メタデータ) (2023-01-26T18:14:12Z) - Scalable Stochastic Parametric Verification with Stochastic Variational
Smoothed Model Checking [1.5293427903448025]
平滑モデル検査 (smMC) は, パラメータ空間全体の満足度関数を, 限られた観測値から推定することを目的としている。
本稿では,確率論的機械学習の最近の進歩を利用して,この限界を推し進める。
構成された満足度関数のスケーラビリティ,計算効率,精度を調べた結果,smMCとSV-smMCの性能を比較した。
論文 参考訳(メタデータ) (2022-05-11T10:43:23Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian
Processes [3.564709604457361]
プロジェクション」マッピングは、事前未知と見なされる正則行列から成り、GPパラメータと共同で推論する必要がある。
提案するフレームワークをGPを用いたマルチ忠実度モデルに拡張し,複数の出力を同時にトレーニングするシナリオを含む。
提案手法の利点は, 産業用ガスタービン用最終段翼の3次元空力最適化に難渋するものである。
論文 参考訳(メタデータ) (2020-08-05T22:28:53Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。