論文の概要: StableGS: A Floater-Free Framework for 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2503.18458v1
- Date: Mon, 24 Mar 2025 09:02:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:39:05.855150
- Title: StableGS: A Floater-Free Framework for 3D Gaussian Splatting
- Title(参考訳): StableGS: 3Dガウス平滑化のためのフロアフリーフレームワーク
- Authors: Luchao Wang, Qian Ren, Kaiming He, Hua Wang, Zhi Chen, Yaohua Tang,
- Abstract要約: クロスビュー奥行きの整合性制約によってフローターを除去するフレームワークであるStableGSを紹介する。
また、半透明な形状と物体の材料特性を分離する双対オパシティGSモデルも導入する。
提案手法は3DGSトレーニングの不安定性に基本的に対処し,既存の最先端の手法をオープンソースデータセットで上回っている。
- 参考スコア(独自算出の注目度): 25.875165638049857
- License:
- Abstract: Recent years have witnessed remarkable success of 3D Gaussian Splatting (3DGS) in novel view synthesis, surpassing prior differentiable rendering methods in both quality and efficiency. However, its training process suffers from coupled opacity-color optimization that frequently converges to local minima, producing floater artifacts that degrade visual fidelity. We present StableGS, a framework that eliminates floaters through cross-view depth consistency constraints while introducing a dual-opacity GS model to decouple geometry and material properties of translucent objects. To further enhance reconstruction quality in weakly-textured regions, we integrate DUSt3R depth estimation, significantly improving geometric stability. Our method fundamentally addresses 3DGS training instabilities, outperforming existing state-of-the-art methods across open-source datasets.
- Abstract(参考訳): 近年では、3Dガウススプラッティング(3DGS)が新しいビュー合成において顕著に成功し、品質と効率の両面で従来の差別化可能なレンダリング手法を上回っている。
しかし、そのトレーニングプロセスは、しばしば局所的なミニマムに収束する不透明色とカラーの複合最適化に悩まされ、視覚的忠実度を低下させるフローターの人工物を生成する。
本研究では, 透光性物体の形状と材料特性を分離する2つの最適GSモデルを導入しながら, 横方向の奥行きの整合性制約によりフローターを除去するフレームワークであるStableGSを提案する。
弱テクスチャ領域における再構成品質をさらに向上するため,DUSt3R深度推定を統合し,幾何安定性を著しく向上する。
提案手法は3DGSトレーニングの不安定性に基本的に対処し,既存の最先端の手法をオープンソースデータセットで上回っている。
関連論文リスト
- CDGS: Confidence-Aware Depth Regularization for 3D Gaussian Splatting [5.8678184183132265]
CDGSは3DGSを強化するために開発された信頼性を考慮した深度正規化手法である。
我々は,単眼深度推定のマルチキュー信頼マップと,運動深度からのスパース構造を適応的に調整するために活用する。
本手法は,初期訓練段階における幾何ディテールの保存性を向上し,NVSの品質と幾何精度の両面での競争性能を実現する。
論文 参考訳(メタデータ) (2025-02-20T16:12:13Z) - HyperGS: Hyperspectral 3D Gaussian Splatting [13.07553815605148]
ハイパースペクトルノベルビュー合成(HNVS)のための新しいフレームワークであるHyperGSを紹介する。
提案手法は,多視点3次元ハイパースペクトルデータセットから材料特性を符号化することで,空間・スペクトルの同時レンダリングを可能にする。
これまでに公表されたモデルに対して14dbの精度向上を図り、実・模擬ハイパースペクトルシーンを広範囲に評価することで、HyperGSのロバスト性を実証する。
論文 参考訳(メタデータ) (2024-12-17T12:23:07Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
高品質な再構成のための神経信号距離場(SDF)とプリミティブを結合する新しい手法であるMonoGSDFを紹介する。
任意のスケールのシーンを扱うために,ロバストな一般化のためのスケーリング戦略を提案する。
実世界のデータセットの実験は、効率を保ちながら、以前の方法よりも優れています。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS)は、明示的なポイントクラウドと暗黙的な機能埋め込みを統合する革新的なハイブリッドモデルである。
本稿では,空間正規化を具体化したレベルベースプログレッシブトレーニング手法を提案する。
我々のアルゴリズムは、数MBしか使用せず、ストレージ効率とレンダリング忠実さを効果的にバランスして、高品質なレンダリングを実現することができる。
論文 参考訳(メタデータ) (2024-08-19T14:34:17Z) - Gaussian Splatting with Localized Points Management [52.009874685460694]
局所的点管理(LPM)は、点加算と幾何校正の双方の最も高い需要において、これらの誤り貢献ゾーンを特定することができる。
LPMは特定ゾーンに点密度を適用し、これらの領域の前に位置する点の不透明度をリセットし、不条件点を補正する新たな機会を創出する。
特に、LPMはバニラ3DGSとSpaceTimeGSの両方を改善して、リアルタイム速度を維持しながら最先端のレンダリング品質を実現している。
論文 参考訳(メタデータ) (2024-06-06T16:55:07Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。