RL2Grid: Benchmarking Reinforcement Learning in Power Grid Operations
- URL: http://arxiv.org/abs/2503.23101v1
- Date: Sat, 29 Mar 2025 14:39:17 GMT
- Title: RL2Grid: Benchmarking Reinforcement Learning in Power Grid Operations
- Authors: Enrico Marchesini, Benjamin Donnot, Constance Crozier, Ian Dytham, Christian Merz, Lars Schewe, Nico Westerbeck, Cathy Wu, Antoine Marot, Priya L. Donti,
- Abstract summary: This paper presents RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control.<n>Built on a power simulation framework developed by RTE France, RL2Grid standardizes tasks, state and action spaces, and reward structures.<n>We benchmark popular RL baselines on the grid control tasks represented within RL2Grid, establishing reference performance metrics.
- Score: 9.68407085698167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) can transform power grid operations by providing adaptive and scalable controllers essential for grid decarbonization. However, existing methods struggle with the complex dynamics, aleatoric uncertainty, long-horizon goals, and hard physical constraints that occur in real-world systems. This paper presents RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control and foster RL maturity. Built on a power simulation framework developed by RTE France, RL2Grid standardizes tasks, state and action spaces, and reward structures within a unified interface for a systematic evaluation and comparison of RL approaches. Moreover, we integrate real control heuristics and safety constraints informed by the operators' expertise to ensure RL2Grid aligns with grid operation requirements. We benchmark popular RL baselines on the grid control tasks represented within RL2Grid, establishing reference performance metrics. Our results and discussion highlight the challenges that power grids pose for RL methods, emphasizing the need for novel algorithms capable of handling real-world physical systems.
Related papers
- Invariant Control Strategies for Active Flow Control using Graph Neural Networks [0.0]
We introduce graph neural networks (GNNs) as a promising architecture forReinforcement Learning (RL)-based flow control.
GNNs process unstructured, threedimensional flow data, preserving spatial relationships without the constraints of a Cartesian grid.
We show that GNN-based control policies achieve comparable performance to existing methods while benefiting from improved generalization properties.
arXiv Detail & Related papers (2025-03-28T09:33:40Z) - Unsupervised-to-Online Reinforcement Learning [59.910638327123394]
Unsupervised-to-online RL (U2O RL) replaces domain-specific supervised offline RL with unsupervised offline RL.
U2O RL not only enables reusing a single pre-trained model for multiple downstream tasks, but also learns better representations.
We empirically demonstrate that U2O RL achieves strong performance that matches or even outperforms previous offline-to-online RL approaches.
arXiv Detail & Related papers (2024-08-27T05:23:45Z) - Graph Reinforcement Learning for Power Grids: A Comprehensive Survey [1.3124421498970822]
The rise of renewable energy and distributed generation requires new approaches to overcome the limitations of traditional methods.
Graph Neural Networks are promising due to their ability to learn from graph-structured data.
This review analyses how Graph Reinforcement Learning can improve representation learning and decision making in power grid use cases.
arXiv Detail & Related papers (2024-07-05T14:07:15Z) - RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
We introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent.
The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks.
This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline.
arXiv Detail & Related papers (2024-02-29T16:07:22Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
This paper proposes an RL framework that leverages an accurate and parallelizable emulation environment to reenact the conditions of a tactical network.
We evaluate our RL learning framework by training a MARLIN agent in conditions replicating a bottleneck link transition between a Satellite Communication (SATCOM) and an UHF Wide Band (UHF) radio link.
arXiv Detail & Related papers (2023-06-27T16:15:15Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
arXiv Detail & Related papers (2022-12-29T03:15:59Z) - Reinforcement Learning for Resilient Power Grids [0.23204178451683263]
Traditional power grid systems have become obsolete under more frequent and extreme natural disasters.
Most power grid simulators and RL interfaces do not support simulation of power grid under large-scale blackouts or when the network is divided into sub-networks.
In this study, we proposed an updated power grid simulator built on Grid2Op, an existing simulator and RL interface, and experimented on limiting the action and observation spaces of Grid2Op.
arXiv Detail & Related papers (2022-12-08T04:40:14Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
This paper describes how domain knowledge of power system operators can be integrated into reinforcement learning frameworks.
A curriculum-based approach with reward tuning is incorporated into the training procedure by modifying the environment.
A parallel training approach on multiple scenarios is employed to avoid biasing the agent to a few scenarios and make it robust to the natural variability in grid operations.
arXiv Detail & Related papers (2021-12-18T20:32:05Z) - URLB: Unsupervised Reinforcement Learning Benchmark [82.36060735454647]
We introduce the Unsupervised Reinforcement Learning Benchmark (URLB)
URLB consists of two phases: reward-free pre-training and downstream task adaptation with extrinsic rewards.
We provide twelve continuous control tasks from three domains for evaluation and open-source code for eight leading unsupervised RL methods.
arXiv Detail & Related papers (2021-10-28T15:07:01Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Scalable Voltage Control using Structure-Driven Hierarchical Deep
Reinforcement Learning [0.0]
This paper presents a novel hierarchical deep reinforcement learning (DRL) based design for the voltage control of power grids.
We exploit the area-wise division structure of the power system to propose a hierarchical DRL design that can be scaled to the larger grid models.
We train area-wise decentralized RL agents to compute lower-level policies for the individual areas, and concurrently train a higher-level DRL agent that uses the updates of the lower-level policies to efficiently coordinate the control actions taken by the lower-level agents.
arXiv Detail & Related papers (2021-01-29T21:30:59Z) - Learning and Fast Adaptation for Grid Emergency Control via Deep Meta
Reinforcement Learning [22.58070790887177]
Power systems are undergoing a significant transformation with more uncertainties, less inertia and closer to operation limits.
There is an imperative need to enhance grid emergency control to maintain system reliability and security.
Great progress has been made in developing deep reinforcement learning (DRL) based grid control solutions in recent years.
Existing DRL-based solutions have two main limitations: 1) they cannot handle well with a wide range of grid operation conditions, system parameters, and contingencies; 2) they generally lack the ability to fast adapt to new grid operation conditions, system parameters, and contingencies, limiting their applicability for real-world applications.
arXiv Detail & Related papers (2021-01-13T19:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.