論文の概要: Steering Large Agent Populations using Mean-Field Schrodinger Bridges with Gaussian Mixture Models
- arxiv url: http://arxiv.org/abs/2503.23705v1
- Date: Mon, 31 Mar 2025 04:01:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:38:50.439468
- Title: Steering Large Agent Populations using Mean-Field Schrodinger Bridges with Gaussian Mixture Models
- Title(参考訳): ガウス混合モデルを用いた平均場シュロディンガーブリッジを用いた大規模エージェント集団のステアリング
- Authors: George Rapakoulias, Ali Reza Pedram, Panagiotis Tsiotras,
- Abstract要約: Mean-Field Schrodinger Bridge (MFSB) 問題は、最小の作業制御ポリシーを見つけることを目的とした最適化問題である。
マルチエージェント制御の文脈において、目的は同一の相互作用する協調エージェントの群の構成を制御することである。
- 参考スコア(独自算出の注目度): 13.03355083378673
- License:
- Abstract: The Mean-Field Schrodinger Bridge (MFSB) problem is an optimization problem aiming to find the minimum effort control policy to drive a McKean-Vlassov stochastic differential equation from one probability measure to another. In the context of multiagent control, the objective is to control the configuration of a swarm of identical, interacting cooperative agents, as captured by the time-varying probability measure of their state. Available methods for solving this problem for distributions with continuous support rely either on spatial discretizations of the problem's domain or on approximating optimal solutions using neural networks trained through stochastic optimization schemes. For agents following Linear Time-Varying dynamics, and for Gaussian Mixture Model boundary distributions, we propose a highly efficient parameterization to approximate the solutions of the corresponding MFSB in closed form, without any learning steps. Our proposed approach consists of a mixture of elementary policies, each solving a Gaussian-to-Gaussian Covariance Steering problem from the components of the initial to the components of the terminal mixture. Leveraging the semidefinite formulation of the Covariance Steering problem, our proposed solver can handle probabilistic hard constraints on the system's state, while maintaining numerical tractability. We illustrate our approach on a variety of numerical examples.
- Abstract(参考訳): MFSB問題(Mean-Field Schrodinger Bridge)は、マッキーン・ヴラソフ確率微分方程式を1つの確率測度から別の確率測度へ駆動する最小の労力制御ポリシーを求める最適化問題である。
マルチエージェント制御の文脈では、その状態の時間変化確率測定によって得られるように、同一で相互作用する協調エージェントの群の構成を制御することが目的である。
連続的な支援を伴う分布に対するこの問題を解決するための有効な方法は、問題の領域の空間的離散化か、確率的最適化スキームによって訓練されたニューラルネットワークを用いて最適な解を近似するかに依存する。
線形時変ダイナミクスに従うエージェントやガウス混合モデルの境界分布に対しては,学習ステップを使わずに,対応するMFSBの解をクローズドな形で近似する高効率なパラメータ化を提案する。
提案手法は,初期成分から終端成分へのガウス-ガウス-ガウス共分散ステアリング問題を解く基本方針の混合から成り立っている。
共分散ステアリング問題の半定式化を活用することで,数値的トラクタビリティを維持しつつ,システムの状態に対する確率的制約を処理できる。
本稿では, 様々な数値例について述べる。
関連論文リスト
- Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題である。
連続空間におけるMAPFの拡散モデルと制約付き最適化を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T21:27:19Z) - Go With the Flow: Fast Diffusion for Gaussian Mixture Models [13.03355083378673]
Schr"odinger Bridges (SB) は、適切なコスト関数を最小化しながら、有限時間で与えられた初期分布を他の最終状態に分配する拡散過程である。
本稿では,ある分布から別の分布へシステムをステアリングするための一組のSBポリシーの潜在メトリゼーションを提案する。
オートエンコーダの空間における画像から画像への変換のような低次元問題におけるこのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-12-12T08:40:22Z) - A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Soft-constrained Schrodinger Bridge: a Stochastic Control Approach [4.922305511803267]
シュル「オーディンガー橋」は、最適に制御された拡散過程を見つけることを目標とする連続時間制御問題と見なすことができる。
本稿では,両分布間のKulback-Leiblerの相違を罰し,端末分布を目標と異なるものにすることで,この問題を一般化することを提案する。
1つの応用は、堅牢な生成拡散モデルの開発である。
論文 参考訳(メタデータ) (2024-03-04T04:10:24Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - Monte Carlo Policy Gradient Method for Binary Optimization [3.742634130733923]
パラメータ化されたポリシー分布に従って二項解をサンプリングする新しい確率モデルを開発する。
離散空間におけるコヒーレント探索には、並列マルコフ・チェイン・モンテカルロ法(MCMC)を用いる。
政策勾配法を期待する定常点への収束性を確立する。
論文 参考訳(メタデータ) (2023-07-03T07:01:42Z) - The Schr\"odinger Bridge between Gaussian Measures has a Closed Form [101.79851806388699]
我々は OT の動的定式化(Schr"odinger bridge (SB) 問題)に焦点を当てる。
本稿では,ガウス測度間のSBに対する閉形式表現について述べる。
論文 参考訳(メタデータ) (2022-02-11T15:59:01Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。