論文の概要: Denoising guarantees for optimized sampling schemes in compressed sensing
- arxiv url: http://arxiv.org/abs/2504.01046v1
- Date: Tue, 01 Apr 2025 02:04:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:23:11.086574
- Title: Denoising guarantees for optimized sampling schemes in compressed sensing
- Title(参考訳): 圧縮センシングにおける最適化サンプリングスキームのデノジング保証
- Authors: Yaniv Plan, Matthew S. Scott, Xia Sheng, Ozgur Yilmaz,
- Abstract要約: 本研究では,計測ノイズによる誤差が,測定回数の増加とともに消失することを示す理論的保証を提供する。
すべての結果は、低次元部分空間の和集合に含まれる前の集合に当てはまる。
- 参考スコア(独自算出の注目度): 3.624865764637671
- License:
- Abstract: Compressed sensing with subsampled unitary matrices benefits from \emph{optimized} sampling schemes, which feature improved theoretical guarantees and empirical performance relative to uniform subsampling. We provide, in a first of its kind in compressed sensing, theoretical guarantees showing that the error caused by the measurement noise vanishes with an increasing number of measurements for optimized sampling schemes, assuming that the noise is Gaussian. We moreover provide similar guarantees for measurements sampled with-replacement with arbitrary probability weights. All our results hold on prior sets contained in a union of low-dimensional subspaces. Finally, we demonstrate that this denoising behavior appears in empirical experiments with a rate that closely matches our theoretical guarantees when the prior set is the range of a generative ReLU neural network and when it is the set of sparse vectors.
- Abstract(参考訳): サブサンプリングされたユニタリ行列を用いた圧縮センシングは、一様サブサンプリングに対する理論的保証と経験的性能を改善した 'emph{optimized' サンプリングスキームの恩恵を受ける。
本研究は, 圧縮センシングにおける第1種として, ノイズがガウス的であることを仮定して, 最適化されたサンプリングスキームに対する測定値の増加とともに, 測定ノイズによる誤差が消失することを示す理論的保証を提供する。
さらに、任意の確率重み付き置換された測定値についても同様の保証を提供する。
すべての結果は、低次元部分空間の和集合に含まれる前の集合に当てはまる。
最後に,このデノナイジング動作は,生成ReLUニューラルネットワークの範囲と,それがスパースベクトルの集合である場合に,我々の理論的保証と密に一致する速度で実証実験に現れることを示す。
関連論文リスト
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
半/ライブラリベースのアンミックスのための新しい凸凸モデルを提案する。
スパース・アンミキシングの代替手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-01-23T10:07:41Z) - Geometry of Sensitivity: Twice Sampling and Hybrid Clipping in Differential Privacy with Optimal Gaussian Noise and Application to Deep Learning [18.92302645198466]
微分プライバシーにおける最適ランダム化の構成問題について検討する。
適切な選択された感度集合に対する最小摂動を求めることは、DP研究の中心的な問題である。
論文 参考訳(メタデータ) (2023-09-06T02:45:08Z) - Learning Rate Free Sampling in Constrained Domains [21.853333421463603]
我々は、完全に学習率の低い制約付き領域をサンプリングするための新しい粒子ベースのアルゴリズム一式を導入する。
我々は,本アルゴリズムの性能を,単純度に基づくターゲットからのサンプリングを含む,様々な数値的な例で示す。
論文 参考訳(メタデータ) (2023-05-24T09:31:18Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
O(k log L)$サンプルは振幅に基づく経験損失関数を最小化する任意のベクトルに信号が近いことを保証するのに十分であることを示す。
この結果はスパース位相検索に適応し、基底信号が$s$-sparseおよび$n$-dimensionalである場合、$O(s log n)$サンプルは同様の保証に十分であることを示す。
論文 参考訳(メタデータ) (2021-06-29T12:49:54Z) - Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix
Recovery [8.581512812219737]
本稿では,ノイズや外周波で劣化した観測結果から低ランク行列を復元する新しい枠組みを提案する。
平方根のラッソにインスパイアされたこの新しい定式化は、ノイズレベルに関する事前の知識を必要としない。
正規化パラメータの1つの普遍的な選択は、(事前未知の)雑音レベルに比例した再構成誤差を達成するのに十分であることを示す。
論文 参考訳(メタデータ) (2021-06-17T02:28:11Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - SNIPS: Solving Noisy Inverse Problems Stochastically [25.567566997688044]
本稿では,線形逆問題の後部分布からサンプルを抽出するSNIPSアルゴリズムを提案する。
我々の解はランゲヴィン力学とニュートン法からのアイデアを取り入れ、事前訓練された最小二乗誤差(MMSE)を利用する。
得られたサンプルは、与えられた測定値と鋭く、詳細で一致しており、それらの多様性は、解決される逆問題に固有の不確実性を明らかにする。
論文 参考訳(メタデータ) (2021-05-31T13:33:21Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Reconstruction of Sparse Signals under Gaussian Noise and Saturation [1.9873949136858349]
ほとんどの圧縮センシングアルゴリズムは、ノイズのある圧縮測定における飽和の影響を考慮していない。
本稿では,信号と飽和度の測定値との整合性を確保するためのデータ忠実度関数を提案する。
論文 参考訳(メタデータ) (2021-02-08T03:01:46Z) - Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable
Embeddings with Generative Priors [52.06292503723978]
生成モデルを用いた圧縮センシングの進歩により, 生成モデルを用いた1ビット圧縮センシングの問題点を考察した。
まずノイズのない1ビット測定を考察し, ガウス測度に基づく近似回復のためのサンプル複雑性境界を提供する。
また,リプシッツ連続生成モデルを用いた1ビット圧縮センシングにも有効であることを示すため,評価誤差と雑音に対する再構成の堅牢性を示すBinary $epsilon$-Stable Embedding特性を実証した。
論文 参考訳(メタデータ) (2020-02-05T09:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。