論文の概要: Incorporating Coupling Knowledge into Echo State Networks for Learning Spatiotemporally Chaotic Dynamics
- arxiv url: http://arxiv.org/abs/2504.01532v1
- Date: Wed, 02 Apr 2025 09:19:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:18:25.219096
- Title: Incorporating Coupling Knowledge into Echo State Networks for Learning Spatiotemporally Chaotic Dynamics
- Title(参考訳): 時空間カオスダイナミクス学習のためのエコー状態ネットワークへの知識の結合
- Authors: Kuei-Jan Chu, Nozomi Akashi, Akihiro Yamamoto,
- Abstract要約: ベンチマークカオスシステムの実験結果から,我々の物理インフォームド法は,既存のエコー状態ネットワークモデルよりも高い性能を示すことが示された。
我々のモデルは、トレーニングデータにおけるノイズに対する堅牢性を示し、事前の結合知識が不十分な場合でも有効である。
- 参考スコア(独自算出の注目度): 0.9831489366502302
- License:
- Abstract: Machine learning methods have shown promise in learning chaotic dynamical systems, enabling model-free short-term prediction and attractor reconstruction. However, when applied to large-scale, spatiotemporally chaotic systems, purely data-driven machine learning methods often suffer from inefficiencies, as they require a large learning model size and a massive amount of training data to achieve acceptable performance. To address this challenge, we incorporate the spatial coupling structure of the target system as an inductive bias in the network design. Specifically, we introduce physics-guided clustered echo state networks, leveraging the efficiency of the echo state networks as a base model. Experimental results on benchmark chaotic systems demonstrate that our physics-informed method outperforms existing echo state network models in learning the target chaotic systems. Additionally, our models exhibit robustness to noise in training data and remain effective even when prior coupling knowledge is imperfect. This approach has the potential to enhance other machine learning methods.
- Abstract(参考訳): 機械学習手法はカオス力学系の学習において有望であり、モデルなしの短期予測とアトラクタ再構成を可能にしている。
しかし、大規模で時空間的にカオス的なシステムに適用する場合、純粋にデータ駆動機械学習手法は、大きな学習モデルのサイズと大量のトレーニングデータを必要とするため、しばしば非効率に悩まされる。
この課題に対処するため,ネットワーク設計における誘導バイアスとして,対象システムの空間結合構造を組み込んだ。
具体的には,物理誘導型クラスタリングエコー状態ネットワークを導入し,エコー状態ネットワークの効率性をベースモデルとして活用する。
ベンチマークカオスシステムの実験結果から,我々の物理インフォームド法は,既存のエコー状態ネットワークモデルよりも高い性能を示すことが示された。
さらに,本モデルでは,事前結合知識が不十分な場合でも,トレーニングデータのノイズに対する堅牢性を示し,有効性を維持する。
このアプローチは、他の機械学習手法を強化する可能性がある。
関連論文リスト
- Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Machine Learning Link Inference of Noisy Delay-coupled Networks with
Opto-Electronic Experimental Tests [1.0766846340954257]
我々は,時間遅延のあるネットワークリンクを推論する一般的な問題を解決するために,機械学習手法を考案した。
まず、未知のネットワークのダイナミクスを模倣するために、貯水池コンピューティングとして知られる機械学習システムを訓練する。
本研究では, 貯留層出力層のトレーニングパラメータを用いて未知のネットワーク構造の推定を導出する手法を定式化し, 検証する。
論文 参考訳(メタデータ) (2020-10-29T00:24:13Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
本稿では,複雑な時間的挙動を示すシステムに対して,不適切にモデル化された力学を克服するためのデータ駆動型モデリング戦略を提案する。
本稿では,システムの真の力学と,不正確あるいは不適切に記述されたシステムのモデルによって与えられる力学の相違を解決するためのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-23T04:57:02Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
データから性能モデルを導出する機械学習手法を提案する。
我々は、通常の微分方程式のコンパクトな系の観点から、それらの平均力学の決定論的近似を利用する。
これにより、ニューラルネットワークの解釈可能な構造が可能になり、システム測定からトレーニングしてホワイトボックスパラメータ化モデルを生成することができる。
論文 参考訳(メタデータ) (2020-02-25T10:56:47Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。