論文の概要: Generalization Bounds in Hybrid Quantum-Classical Machine Learning Models
- arxiv url: http://arxiv.org/abs/2504.08456v1
- Date: Fri, 11 Apr 2025 11:35:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:56.951662
- Title: Generalization Bounds in Hybrid Quantum-Classical Machine Learning Models
- Title(参考訳): ハイブリッド量子古典機械学習モデルにおける一般化境界
- Authors: Tongyan Wu, Amine Bentellis, Alona Sakhnenko, Jeanette Miriam Lorenz,
- Abstract要約: 我々はハイブリッドモデルにおける一般化を解析するための統一的な数学的枠組みを開発する。
量子古典的畳み込みニューラルネットワーク(QCCNN)にこの結果を適用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Hybrid classical-quantum models aim to harness the strengths of both quantum computing and classical machine learning, but their practical potential remains poorly understood. In this work, we develop a unified mathematical framework for analyzing generalization in hybrid models, offering insight into how these systems learn from data. We establish a novel generalization bound of the form $O\big( \sqrt{\frac{T\log{T}}{N}} + \frac{\alpha}{\sqrt{N}}\big)$ for $N$ training data points, $T$ trainable quantum gates, and bounded fully-connected layers $||F|| \leq \alpha$. This bound decomposes cleanly into quantum and classical contributions, extending prior work on both components and clarifying their interaction. We apply our results to the quantum-classical convolutional neural network (QCCNN), an architecture that integrates quantum convolutional layers with classical processing. Alongside the bound, we highlight conceptual limitations of applying classical statistical learning theory in the hybrid setting and suggest promising directions for future theoretical work.
- Abstract(参考訳): ハイブリッド古典量子モデルは、量子コンピューティングと古典機械学習の両方の長所を活用することを目的としているが、その実用的可能性はまだよく分かっていない。
本研究では、ハイブリッドモデルにおける一般化を解析するための統一的な数学的枠組みを開発し、これらのシステムがデータからどのように学習するかについての洞察を提供する。
我々は、$O\big( \sqrt {\frac{T\log{T}}{N}} + \frac{\alpha}{\sqrt{N}}\big)$ for $N$ データポイント、$T$トレーニング可能な量子ゲート、および有界完全連結層$||F|| \leq \alpha$の新たな一般化を確立する。
この境界は、量子的および古典的なコントリビューションにきれいに分解され、両方のコンポーネントに対する事前の作業を延長し、相互作用を明確にする。
量子古典畳み込みニューラルネットワーク(QCCNN)は,量子畳み込み層と古典的処理を統合するアーキテクチャである。
さらに,従来の統計学習理論をハイブリッド環境に適用する概念的限界を強調し,将来的な理論研究に向けて有望な方向性を提案する。
関連論文リスト
- Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
本稿では,4量子ビット量子回路と古典的ニューラルネットワークを組み合わせた,分類タスクのためのハイブリッド量子古典型機械学習モデルを提案する。
このモデルは20エポック以上で訓練され、16エポックに設定されたIrisデータセットテストで100%の精度を達成した。
この研究は、ハイブリッド量子古典モデルの研究の活発化と、実際のデータセットへの適用性に寄与する。
論文 参考訳(メタデータ) (2024-10-21T13:15:12Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,古典的畳み込みニューラルネットワーク(CNN)から量子ニューラルネットワーク(QNN)へ知識を伝達するための新しい枠組みを提案する。
我々は、MNIST, Fashion MNIST, CIFAR10データセット上の4および8キュービットを持つ2つのパラメタライズド量子回路(PQC)を用いて、広範な実験を行う。
我々の結果は、古典的なディープラーニングと新しい量子コンピューティングをブリッジし、量子マシンインテリジェンスにおいてより強力でリソースを意識したモデルを構築するための、有望なパラダイムを確立します。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Defining the semiclassical limit of the quantum Rabi Hamiltonian [0.0]
ここでは、半古典的モデルを量子ハミルトニアンから直接導出するための形式主義が展開される。
これは量子-古典遷移を研究するためのフレームワークを提供し、量子技術に潜在的な応用をもたらす。
論文 参考訳(メタデータ) (2022-03-31T16:15:57Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - From a quantum theory to a classical one [117.44028458220427]
量子対古典的交叉を記述するための形式的アプローチを提示し議論する。
この手法は、1982年にL. Yaffeによって、大きな$N$の量子場理論に取り組むために導入された。
論文 参考訳(メタデータ) (2020-04-01T09:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。