論文の概要: Integration Matters for Learning PDEs with Backwards SDEs
- arxiv url: http://arxiv.org/abs/2505.01078v1
- Date: Fri, 02 May 2025 07:36:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.9561
- Title: Integration Matters for Learning PDEs with Backwards SDEs
- Title(参考訳): 後方SDEを用いたPDE学習における統合の課題
- Authors: Sungje Park, Stephen Tu,
- Abstract要約: 我々のストラトノビッチベースのBSDE法はEMベースの変種を一貫して上回り、PINNと競合する結果が得られることを示す。
本研究は,BSDEをベースとしたPDE解法において,統合スキームが重要な役割を担っていることを示すものである。
- 参考スコア(独自算出の注目度): 8.538124789414011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backward stochastic differential equation (BSDE)-based deep learning methods provide an alternative to Physics-Informed Neural Networks (PINNs) for solving high-dimensional partial differential equations (PDEs), offering algorithmic advantages in settings such as stochastic optimal control, where the PDEs of interest are tied to an underlying dynamical system. However, existing BSDE-based solvers have empirically been shown to underperform relative to PINNs in the literature. In this paper, we identify the root cause of this performance gap as a discretization bias introduced by the standard Euler-Maruyama (EM) integration scheme applied to short-horizon self-consistency BSDE losses, which shifts the optimization landscape off target. We find that this bias cannot be satisfactorily addressed through finer step sizes or longer self-consistency horizons. To properly handle this issue, we propose a Stratonovich-based BSDE formulation, which we implement with stochastic Heun integration. We show that our proposed approach completely eliminates the bias issues faced by EM integration. Furthermore, our empirical results show that our Heun-based BSDE method consistently outperforms EM-based variants and achieves competitive results with PINNs across multiple high-dimensional benchmarks. Our findings highlight the critical role of integration schemes in BSDE-based PDE solvers, an algorithmic detail that has received little attention thus far in the literature.
- Abstract(参考訳): 後方確率微分方程式 (BSDE) に基づくディープラーニング手法は、高次元偏微分方程式 (PDE) を解くための物理インフォームドニューラルネットワーク (PINN) の代わりに、確率最適制御のようなアルゴリズム上の利点を提供する。
しかし、既存のBSDEベースの解法は、文学においてPINNと比較して性能が劣っていることが実証的に示されている。
本稿では,この性能ギャップの根本原因を,目標から最適化ランドスケープをシフトさせる短地自己整合BSDE損失に適用した標準Euler-Maruyama(EM)積分法によって導入された離散化バイアスとして同定する。
このバイアスは、より細かいステップサイズやより長い自己整合性地平線を通じて十分に対処できない。
この問題を適切に処理するために,確率的 Heun 積分を用いて実装した Stratonovich ベースの BSDE の定式化を提案する。
提案手法は,EM統合が直面するバイアス問題を完全に排除することを示す。
さらに,我々の経験的結果から,我々のHeun-based BSDE法はEM-based variantsより一貫して優れており,複数の高次元ベンチマークでPINNsと競合する結果が得られた。
本研究は,BSDEをベースとしたPDE解法において,統合スキームが重要な役割を担っていることを示すものである。
関連論文リスト
- Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
分散サーバ(DFL)はクライアント・クライアント・アーキテクチャへの依存をなくす。
非滑らかな正規化はしばしば機械学習タスクに組み込まれる。
本稿では,これらの問題を解決する新しいDNCFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-17T08:32:25Z) - Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
科学基盤モデル(SciFM)は、様々な領域にまたがる伝達可能な表現を学習するための有望なツールとして登場しつつある。
本稿では,PDE残差を単独の学習信号として,あるいはデータ損失と組み合わせて事前学習に組み込むことにより,限定的あるいは実用的でないトレーニングデータに補償することを提案する。
以上の結果から, PDE制約による事前学習は, 解データのみを訓練したモデルよりも, 一般化を著しく向上させることが示された。
論文 参考訳(メタデータ) (2025-03-24T19:12:39Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations [0.0]
非線形PDEシステムを解くためにカーネル法とディープNNの長所を統合するためにカーネル重み付き補正残差(CoRes)を導入する。
CoResは幅広いベンチマーク問題の解決において競合する手法を一貫して上回っている。
我々はPDEの解決にカーネル手法を活用することに新たな関心を喚起する可能性があると考えている。
論文 参考訳(メタデータ) (2024-01-07T14:09:42Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
本稿では、損失関数を用いて、PINNモデルが基礎となるPDEを強制しようとするのと同じように、リー点対称性をネットワークに通知するロス関数を提案する。
我々の対称性の損失は、リー群の無限小生成元がPDE解を保存することを保証する。
実験により,PDEのリー点対称性による誘導バイアスはPINNの試料効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-11-07T19:07:16Z) - Latent SDEs on Homogeneous Spaces [9.361372513858043]
偏微分方程式(SDE)の解によって観測された幾何学的過程が支配される潜在変数モデルにおける変分ベイズ推論の問題を考察する。
実験により,提案型の潜伏SDEを既存の一段階のオイラー・丸山スキームを用いて効率的に学習できることが示されている。
論文 参考訳(メタデータ) (2023-06-28T14:18:52Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。