論文の概要: A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2401.03492v2
- Date: Thu, 26 Sep 2024 18:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 05:28:28.166060
- Title: A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
- Title(参考訳): 非線形偏微分方程式を含むフォワードおよび逆問題の解法のためのガウス過程フレームワーク
- Authors: Carlos Mora, Amin Yousefpour, Shirin Hosseinmardi, Ramin Bostanabad,
- Abstract要約: 非線形PDEシステムを解くためにカーネル法とディープNNの長所を統合するためにカーネル重み付き補正残差(CoRes)を導入する。
CoResは幅広いベンチマーク問題の解決において競合する手法を一貫して上回っている。
我々はPDEの解決にカーネル手法を活用することに新たな関心を喚起する可能性があると考えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed machine learning (PIML) has emerged as a promising alternative to conventional numerical methods for solving partial differential equations (PDEs). PIML models are increasingly built via deep neural networks (NNs) whose architecture and training process are designed such that the network satisfies the PDE system. While such PIML models have substantially advanced over the past few years, their performance is still very sensitive to the NN's architecture and loss function. Motivated by this limitation, we introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems. To achieve this integration, we design a modular and robust framework which consistently outperforms competing methods in solving a broad range of benchmark problems. This performance improvement has a theoretical justification and is particularly attractive since we simplify the training process while negligibly increasing the inference costs. Additionally, our studies on solving multiple PDEs indicate that kernel-weighted CoRes considerably decrease the sensitivity of NNs to factors such as random initialization, architecture type, and choice of optimizer. We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.
- Abstract(参考訳): 物理インフォームド・機械学習(PIML)は、偏微分方程式(PDE)を解くための従来の数値法に代わる有望な代替手段として登場した。
PIMLモデルは、アーキテクチャとトレーニングプロセスが設計されているディープニューラルネットワーク(NN)を介して、ネットワークがPDEシステムを満たすように、ますます構築される。
このようなPIMLモデルはここ数年で大幅に進歩してきたが、その性能はNNのアーキテクチャや損失関数に非常に敏感である。
この制限により、カーネルメソッドとディープNNの強みを統合するためにカーネル重み付き補正残差(CoRes)を導入し、非線形PDEシステムを解決する。
この統合を実現するために、我々は幅広いベンチマーク問題の解決において競合する手法を一貫して上回るモジュラーでロバストなフレームワークを設計する。
この性能改善は理論的に正当化されており、トレーニングプロセスを単純化し、推論コストを過度に増加させるため、特に魅力的である。
さらに、複数のPDEを解くことで、カーネル重み付きCoReは、ランダム初期化、アーキテクチャタイプ、オプティマイザの選択などの要因に対するNNの感度を著しく低下させることを示す。
我々はPDEの解決にカーネル手法を活用することに新たな関心を喚起する可能性があると考えている。
関連論文リスト
- Which Optimizer Works Best for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks? [1.8175282137722093]
物理学 アーノルドニューラルネットワーク(PINN)は偏微分方程式(PDE)の計算に革命をもたらした
これらのPINNは、ニューラルネットワークのトレーニングプロセスにPDEをソフト制約として統合する。
論文 参考訳(メタデータ) (2025-01-22T21:19:42Z) - Solving Partial Differential Equations with Random Feature Models [1.3597551064547502]
PDEを効率的に解くためのランダムな特徴ベースのフレームワークを提案する。
多数のコロケーションポイントを持つ問題に直面する最先端の解法とは対照的に,提案手法は計算複雑性を低減させる。
論文 参考訳(メタデータ) (2024-12-31T05:48:31Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
物理インフォームドセル表現(PIXEL)と呼ばれる新しいデータ駆動型PDEの解法を提案する。
PIXELは古典的な数値法と学習に基づくアプローチをエレガントに組み合わせている。
PIXELは高速収束速度と高精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T10:46:56Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。