Quantum thermodynamic uncertainty relations without quantum corrections: A coherent-incoherent correspondence approach
- URL: http://arxiv.org/abs/2505.09973v2
- Date: Wed, 28 May 2025 01:53:36 GMT
- Title: Quantum thermodynamic uncertainty relations without quantum corrections: A coherent-incoherent correspondence approach
- Authors: Tomohiro Nishiyama, Yoshihiko Hasegawa,
- Abstract summary: coherent-incoherent correspondence establishes a mapping between the original quantum system undergoing coherent evolution and its corresponding incoherent system without coherent dynamics.<n>This framework provides a general method for deriving trade-offs in quantum thermodynamics.
- Score: 1.6574413179773757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the coherent-incoherent correspondence as a framework for deriving quantum thermodynamic uncertainty relations under continuous measurement in Lindblad dynamics. The coherent-incoherent correspondence establishes a mapping between the original quantum system undergoing coherent evolution and its corresponding incoherent system without coherent dynamics. The coherent-incoherent correspondence relates quantities across these two systems, including jump statistics, dynamical activity, and entropy production. Since the classical-like properties of the incoherent system allow us to derive thermodynamic uncertainty relations within it, these relations can be transferred to the coherent system via the coherent-incoherent correspondence. This enables us to derive quantum thermodynamic uncertainty relations for the original coherent system. Unlike existing quantum uncertainty relations, which typically require explicit quantum correction terms, our approach avoids these additional terms. This framework provides a general method for deriving trade-offs in quantum thermodynamics.
Related papers
- Many-Body Fluctuation Theorems for Quantum Coherence and Correlation Dynamics [11.651470433850731]
We extend quantum fluctuation theorems to quantum information dynamics and many-body systems.<n>By extending to quasiprobability, we derive quantum fluctuation theorems for many-body coherence and quantum correlations.<n>These findings uncover the statistical structure underlying the nonequilibrium quantum information dynamics.
arXiv Detail & Related papers (2025-07-02T11:10:42Z) - Efficient approximation of regularized relative entropies and applications [11.59751616011475]
We show that the regularized relative entropy can be efficiently approximated within an additive error by a quantum relative entropy program of size.<n>This applies to particular to the regularized relative entropy in adversarial quantum channel discrimination.<n>In particular, when the set of interest does not directly satisfy the required structural assumptions, it can be relaxed to one that does.
arXiv Detail & Related papers (2025-02-21T18:29:45Z) - A unified framework for classical and quantum uncertainty relations using stochastic representations [2.1024950052120417]
We show that all previously discovered uncertainty relations can be derived solely through the representation of the same dynamics.<n>We apply this method to Markovian open quantum systems by unraveling their dynamics.<n>This fully establishes uncertainty relations for both classical and quantum systems as intrinsic properties of their nature.
arXiv Detail & Related papers (2024-12-06T12:16:41Z) - Fundamental bounds on precision and response for quantum trajectory observables [0.0]
We show that quantum coherence can enhance precision and violate classical uncertainty relations in quantum systems.<n>We present three key results: (i) a quantum generalization of the uncertainty relation, which bounds the relative fluctuations of currents in terms of entropy production and dynamical activity; (ii) a quantum inverse uncertainty relation, which constrains the relative fluctuations of arbitrary counting observables based on their instantaneous fluctuations and the spectral gap of the symmetrized Liouvillian; and (iii) a quantum response kinetic uncertainty relation, which bounds the response of general observables to kinetic perturbations in terms of dynamical activity.
arXiv Detail & Related papers (2024-11-29T08:45:34Z) - Intrinsic Quantum Mpemba Effect in Markovian Systems and Quantum Circuits [9.979018524312751]
The quantum Mpemba effect (QME) describes the counterintuitive phenomenon in which a system farther from equilibrium reaches steady state faster than one closer to equilibrium.<n>Here we propose the intrinsic quantum Mpemba effect (IQME), defined using the trajectory length traced by the quantum state as a more appropriate measure of distance.<n>This work deepens our understanding of quantum state evolution and lays the foundation for accurately capturing novel quantum dynamical behaviour.
arXiv Detail & Related papers (2024-11-27T15:00:59Z) - Dynamics Investigation of the quantum-control-assisted multipartite
uncertainty relation in Heisenberg model with Dzyaloshinski-Moriya
interaction [10.664589057582157]
Zheng constructs a quantum-control-assisted multipartite variance-based uncertainty relation.
We investigate the dynamics of the new uncertainty relation in the Heisenberg system with the Dzyaloshinski-Moriya interaction.
arXiv Detail & Related papers (2023-08-25T12:11:42Z) - Quasiparticles of Decoherence Processes in Open Quantum Many-Body
Systems: Incoherentons [8.329456268842227]
We find that hitherto unrecognized quasiparticles -- incoherentons -- describe a coherent-to-incoherent transition in eigenmodes of a Liouvillian superoperator.
We demonstrate the existence of incoherentons in a lattice boson model subject to dephasing, and show that the quantum coherence gap closes when incoherentons are deconfined.
arXiv Detail & Related papers (2022-11-28T01:35:49Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Generalized uncertainty relation between thermodynamic variables in
quantum thermodynamics [0.0]
In quantum systems, the strength of interaction between the system and the environment may become non-negligible in a strong coupling regime.
We derive the thermodynamic uncertainty relation between intensive and exten?sive variables valid at all coupling regimes.
arXiv Detail & Related papers (2021-07-30T04:17:29Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators [6.211723927647019]
We examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime.
Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
arXiv Detail & Related papers (2020-11-30T03:15:27Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.