論文の概要: Empowering Sustainable Finance with Artificial Intelligence: A Framework for Responsible Implementation
- arxiv url: http://arxiv.org/abs/2505.12012v1
- Date: Sat, 17 May 2025 14:05:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.98987
- Title: Empowering Sustainable Finance with Artificial Intelligence: A Framework for Responsible Implementation
- Title(参考訳): 人工知能による持続可能な財務の強化:責任ある実装のためのフレームワーク
- Authors: Georgios Pavlidis,
- Abstract要約: この章では、環境、社会、ガバナンス(ESG)投資の台頭と人工知能(AI)技術の指数的成長という、2つの大きな発展の収束について論じる。
グリーンやESG関連融資などの多様なESG機器の需要の増加は、グローバルAI市場の急速な成長と一致している。
これらのリスクを軽減するためには、AIとESG投資のための新しい原則とルールが必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This chapter explores the convergence of two major developments: the rise of environmental, social, and governance (ESG) investing and the exponential growth of artificial intelligence (AI) technology. The increased demand for diverse ESG instruments, such as green and ESG-linked loans, will be aligned with the rapid growth of the global AI market, which is expected to be worth $1,394.30 billion by 2029. AI can assist in identifying and pricing climate risks, setting more ambitious ESG goals, and advancing sustainable finance decisions. However, delegating sustainable finance decisions to AI poses serious risks, and new principles and rules for AI and ESG investing are necessary to mitigate these risks. This chapter highlights the challenges associated with norm-setting initiatives and stresses the need for the fine-tuning of the principles of legitimacy, oversight and verification, transparency, and explainability. Finally, the chapter contends that integrating AI into ESG non-financial reporting necessitates a heightened sense of responsibility and the establishment of fundamental guiding principles within the spheres of AI and ESG investing.
- Abstract(参考訳): この章では、環境、社会、ガバナンス(ESG)投資の台頭と人工知能(AI)技術の指数的成長という、2つの大きな発展の収束について論じる。
グリーンやESG関連融資などの多様なESG機器の需要の増加は、2029年までに1394.30億ドルの価値が期待される世界AI市場の急激な成長と一致している。
AIは、気候リスクの特定と価格設定、より野心的なESG目標の設定、持続可能な金融決定の促進を支援することができる。
しかし、持続可能な金融決定をAIに委譲することは深刻なリスクをもたらし、これらのリスクを軽減するためには、AIとESGの新たな原則とルールが必要である。
この章では、標準設定のイニシアティブに関連する課題を強調し、正当性、監視と検証、透明性、説明可能性といった原則の微調整の必要性を強調します。
最後に、この章は、AIをESGの非財務報告に統合するためには、責任感の高揚と、AIとESG投資の領域における基本的な指針原則の確立が必要であると主張している。
関連論文リスト
- Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
生成人工知能(Generative Artificial Intelligence)は、イノベーションを促進し、多くの産業におけるガバナンスを再形成する可能性を持つ強力な新技術である。
しかし、テクノロジの複雑さ、ガバナンスのギャップ、リソースのミスアライメントなど、GenAIをスケールする上で大きな課題に直面している。
本稿では、大企業におけるGenAI導入の複雑な要件をエンタープライズアーキテクチャ管理が満たす方法について検討する。
論文 参考訳(メタデータ) (2025-05-09T07:41:33Z) - Safety is Essential for Responsible Open-Ended Systems [47.172735322186]
オープンエンドレスネス(Open-Endedness)とは、AIシステムが新規で多様なアーティファクトやソリューションを継続的に自律的に生成する能力である。
このポジションペーパーは、Open-Ended AIの本質的に動的で自己伝播的な性質は、重大な、未発見のリスクをもたらすと主張している。
論文 参考訳(メタデータ) (2025-02-06T21:32:07Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOSは、ブロックチェーン、スマートコントラクト、分散自律組織(DAO)など、Web3テクノロジを活用する分散ガバナンス(DeGov)モデルである。
AIエージェントのグローバルレジストリを確立し、動的リスク分類、比例監視、自動コンプライアンス監視を可能にする。
合理性、倫理的根拠、ゴールアライメントの哲学的原則を統合することで、ETHOSは信頼、透明性、参加的ガバナンスを促進するための堅牢な研究アジェンダを作ることを目指している。
論文 参考訳(メタデータ) (2024-12-22T18:01:49Z) - Integrating ESG and AI: A Comprehensive Responsible AI Assessment Framework [15.544366555353262]
ESG-AIフレームワークは28社の企業との関わりの洞察に基づいて開発された。
これは、AIアプリケーションの環境および社会的影響の概要を提供し、投資家のようなユーザーがAI利用の物質性を評価するのに役立つ。
投資家は、構造化されたエンゲージメントと特定のリスク領域の徹底的な評価を通じて、責任あるAIに対する企業のコミットメントを評価することができる。
論文 参考訳(メタデータ) (2024-08-02T00:58:01Z) - AI in ESG for Financial Institutions: An Industrial Survey [4.893954917947095]
本稿では,ESGフレームワークの活性化におけるAIの必要性と影響を明らかにするために,産業環境を調査した。
調査では、分析能力、リスク評価、顧客エンゲージメント、報告精度など、ESGの主要な3つの柱にまたがるAIアプリケーションを分類した。
この論文は、ESG関連の銀行プロセスにおけるAI展開の倫理的側面を強調し、責任と持続可能なAIの衝動についても論じている。
論文 参考訳(メタデータ) (2024-02-03T02:14:47Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - The AI Revolution: Opportunities and Challenges for the Finance Sector [12.486180180030964]
金融セクターにおけるAIの応用は、業界を変えつつある。
しかしながら、これらのメリットに加えて、AIはいくつかの課題も提示する。
これには透明性、解釈可能性、公正性、説明責任、信頼性に関する問題が含まれる。
金融セクターにおけるAIの使用は、データプライバシとセキュリティに関する重要な疑問をさらに引き起こす。
このニーズをグローバルに認識しているにもかかわらず、金融におけるAIの使用に関する明確なガイドラインや法律はいまだに存在しない。
論文 参考訳(メタデータ) (2023-08-31T08:30:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Qlib: An AI-oriented Quantitative Investment Platform [86.8580406876954]
AI技術は、量的投資システムに新たな課題を提起した。
Qlibは、その可能性の実現、研究の強化、定量的投資におけるAIテクノロジの価値の創造を目的とする。
論文 参考訳(メタデータ) (2020-09-22T12:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。