論文の概要: Quantum-Enhanced Channel Mixing in RWKV Models for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2505.13524v2
- Date: Sat, 31 May 2025 21:21:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 16:22:43.403039
- Title: Quantum-Enhanced Channel Mixing in RWKV Models for Time Series Forecasting
- Title(参考訳): 時系列予測のためのRWKVモデルにおける量子化チャネル混合
- Authors: Chi-Sheng Chen, En-Jui Kuo,
- Abstract要約: ニューラルシークエンスモデリングの最近の進歩は、RWKVのようなアーキテクチャにつながり、リカレントスタイルの時間混合とフィードフォワードチャネルミキシングを組み合わせることで、効率的なロングコンテキスト処理を可能にする。
本稿では、標準フィードフォワードネットワーク(FFN)を部分的に変分量子回路(VQC)に置き換えるRWKVモデルのハイブリッド量子ピース拡張であるQuantumRWKVを提案する。
量子コンポーネントは、PennyLaneフレームワークを介してエンドツーエンドの微分性を保ちながら、非線形表現能力を高めるように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in neural sequence modeling have led to architectures such as RWKV, which combine recurrent-style time mixing with feedforward channel mixing to enable efficient long-context processing. In this work, we propose QuantumRWKV, a hybrid quantum-classical extension of the RWKV model, where the standard feedforward network (FFN) is partially replaced by a variational quantum circuit (VQC). The quantum component is designed to enhance nonlinear representational capacity while preserving end-to-end differentiability via the PennyLane framework. To assess the impact of quantum enhancements, we conduct a comparative evaluation between QuantumRWKV and its classical counterpart across ten synthetic time-series forecasting tasks, encompassing linear (ARMA), chaotic (Logistic Map), oscillatory (Damped Oscillator, Sine Wave), and regime-switching signals. Our results show that QuantumRWKV outperforms the classical model in 6 out of 10 tasks, particularly excelling in sequences with nonlinear or chaotic dynamics, such as Chaotic Logistic, Noisy Damped Oscillator, Sine Wave, Triangle Wave, Sawtooth, and ARMA. However, it underperforms on tasks involving sharp regime shifts (Piecewise Regime) or smoother periodic patterns (Damped Oscillator, Seasonal Trend, Square Wave). This study provides one of the first systematic comparisons between hybrid quantum-classical and classical recurrent models in temporal domains, highlighting the scenarios where quantum circuits can offer tangible advantages. We conclude with a discussion on architectural trade-offs, such as variance sensitivity in quantum layers, and outline future directions for scaling quantum integration in long-context temporal learning systems.
- Abstract(参考訳): ニューラルシークエンスモデリングの最近の進歩は、RWKVのようなアーキテクチャにつながり、リカレントスタイルの時間混合とフィードフォワードチャネルミキシングを組み合わせることで、効率的なロングコンテキスト処理を可能にする。
本稿では、標準フィードフォワードネットワーク(FFN)を部分的に変分量子回路(VQC)に置き換えるRWKVモデルのハイブリッド量子古典拡張であるQuantumRWKVを提案する。
量子コンポーネントは、PennyLaneフレームワークを介してエンドツーエンドの微分性を保ちながら、非線形表現能力を高めるように設計されている。
量子拡張の影響を評価するため、線形(ARMA)、カオス(ロジスティックマップ)、発振(Damped Oscillator, Sine Wave)、レギュラースイッチング信号を含む10の時系列予測タスクにおいて、QuantumRWKVとその古典的時系列予測タスクの比較評価を行う。
以上の結果から,QuantumRWKVは10タスク中6タスクにおいて,特にカオスロジスティック,ノイズ減衰オシレータ,Sine Wave,Triangle Wave,Sawtooth,ARMAなどの非線形あるいはカオス動的シーケンスにおいて,古典的モデルよりも優れていた。
しかし、シャープなレジームシフト(Piecewise Regime)やスムーズな周期パターン(Damped Oscillator, Seasonal Trends, Square Wave)を含むタスクではパフォーマンスが低い。
この研究は、時間領域におけるハイブリッド量子-古典的および古典的リカレントモデルの間の最初の体系的な比較の1つを提供し、量子回路が有意義な利点をもたらすシナリオを強調した。
本稿では、量子層における分散感度などのアーキテクチャ上のトレードオフについて論じ、長文時間学習システムにおける量子統合のスケーリングに向けた今後の方向性を概説する。
関連論文リスト
- Toward Practical Quantum Machine Learning: A Novel Hybrid Quantum LSTM for Fraud Detection [0.1398098625978622]
本稿では,不正検出のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
重畳や絡み合いなどの量子現象を活用することで、我々のモデルはシーケンシャルトランザクションデータの特徴表現を強化する。
その結果,従来のLSTMベースラインと比較して,精度,精度,リコール,F1スコアの競争力の向上が示された。
論文 参考訳(メタデータ) (2025-04-30T19:09:12Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
本稿では,量子アテンション機構を備えた古典的トランスフォーマーモデルを強化するハイブリッドアーキテクチャであるQuantum Adaptive Self-Attention (QASA)を提案する。
QASAはドット積の注意をパラメータ化量子回路(PQC)に置き換え、量子ヒルベルト空間におけるトークン間の関係を適応的に捉える。
合成時系列タスクの実験により、QASAは標準変圧器と古典的変圧器の双方と比較して、より高速な収束と優れた一般化を実現することが示された。
論文 参考訳(メタデータ) (2025-04-05T02:52:37Z) - Toward Large-Scale Distributed Quantum Long Short-Term Memory with Modular Quantum Computers [5.673361333697935]
我々は、ノイズ中間スケール量子(NISQ)デバイス上でのスケーラビリティ問題に対処するために、分散量子長短期メモリ(QLSTM)フレームワークを導入する。
QLSTMは長期の時間的依存関係をキャプチャし、分散アーキテクチャは基礎となる変分量子回路をより小さく管理可能なサブ回路に分割する。
分散QLSTMは,古典的アプローチと比較して,安定した収束とトレーニングダイナミクスの向上を実現している。
論文 参考訳(メタデータ) (2025-03-18T10:07:34Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
本稿では,量子カーネル法を従来のLSTMアーキテクチャに統合したQK-LSTM(Quantum Kernel-Based Long short-Memory)ネットワークを提案する。
QK-LSTMは、トレーニング可能なパラメータが少ない複雑な非線形依存と時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-12-12T01:16:52Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
本稿では,量子振幅推定のための雑音対応ベイズアルゴリズムであるBAEを紹介する。
我々は,BAEがハイゼンベルク限界推定を達成し,他の手法と比較した。
論文 参考訳(メタデータ) (2024-12-05T18:09:41Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Learning to Program Variational Quantum Circuits with Fast Weights [3.6881738506505988]
本稿では,時間的あるいはシーケンシャルな学習課題に対する解決法として,QFWP(Quantum Fast Weight Programmers)を提案する。
提案したQFWPモデルは、量子リカレントニューラルネットワークの使用を必要とせずに、時間的依存関係の学習を実現する。
本研究では, 時系列予測とRLタスクにおいて, 提案したQFWPモデルの有効性を示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2024-02-27T18:53:18Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
本稿では、量子系の長時間のダイナミクスを安定的に捉えるための代替の汎用スキームを提案する。
二次元量子イジングモデルにおけるキブル・ズレーク機構の解明により,時間依存性のクエンチ力学にこのスキームを適用した。
論文 参考訳(メタデータ) (2022-09-07T15:50:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Time-Reversal Symmetric ODE Network [138.02741983098454]
時間反転対称性は古典力学や量子力学においてしばしば保持される基本的な性質である。
本稿では,通常の微分方程式(ODE)ネットワークがこの時間反転対称性にどの程度よく適合しているかを測定する新しい損失関数を提案する。
時間反転対称性を完全に持たないシステムであっても, TRS-ODEN はベースラインよりも優れた予測性能が得られることを示す。
論文 参考訳(メタデータ) (2020-07-22T12:19:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。