論文の概要: Depth-Efficient Quantum Circuit Synthesis for Deterministic Dicke State Preparation
- arxiv url: http://arxiv.org/abs/2505.15413v1
- Date: Wed, 21 May 2025 11:55:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.608045
- Title: Depth-Efficient Quantum Circuit Synthesis for Deterministic Dicke State Preparation
- Title(参考訳): 決定論的ディック状態生成のための深さ効率の良い量子回路合成
- Authors: Pei Yuan, Shengyu Zhang,
- Abstract要約: ディック状態は量子コンピューティングに広く応用された、絡み合った量子状態の重要なクラスを表す。
一般に見られる2つの量子ビット接続制約の下でDicke状態生成のための決定論的量子回路を提案する。
- 参考スコア(独自算出の注目度): 5.755460769073285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $n$-qubit $k$-weight Dicke states $|D^n_k\rangle$, defined as the uniform superposition of all computational basis states with exactly $k$ qubits in state $|1\rangle$, form a basis of the symmetric subspace and represent an important class of entangled quantum states with broad applications in quantum computing. We propose deterministic quantum circuits for Dicke state preparation under two commonly seen qubit connectivity constraints: 1. All-to-all qubit connectivity: our circuit has depth $O(\log(k)\log(n/k)+k)$, which improves the previous best bound of $O(k\log(n/k))$. 2. Grid qubit connectivity ($(n_1\times n_2)$-grid, $n_1\le n_2$): (a) For $k\ge n_2/n_1$, we design a circuit with depth $O(k\log(n/k)+n_2)$, surpassing the prior $O(\sqrt{nk})$ bound. (b) For $k< n_2/n_1$, we design an optimal-depth circuit with depth $O(n_2)$. Furthermore, we establish the depth lower bounds of $\Omega(\log(n))$ for all-to-all qubit connectivity and $\Omega(n_2)$ for $(n_1\times n_2)$-grid connectivity constraints, demonstrating the near-optimality of our constructions.
- Abstract(参考訳): $n$-qubit $k$-weight Dicke state $|D^n_k\rangle$, defined as a uniform superposition of all computer basis state with exactly $k$ qubits in state $|1\rangle$, formed a basis of the symmetric subspace and represent a important class of entangled quantum state with wide application in quantum computing。
一般に見られる2つの量子ビット接続制約の下でDicke状態生成のための決定論的量子回路を提案する。
私たちの回路は深度$O(\log(k)\log(n/k)+k)$を持ち、以前の最高値$O(k\log(n/k))$を改善する。
2.グリッド量子ビット接続((n_1\times n_2)$-grid,$n_1\le n_2$)
(a)$k\ge n_2/n_1$の場合、深さ$O(k\log(n/k)+n_2)$の回路を設計し、以前の$O(\sqrt{nk})$のバウンドを超える。
(b)$k<n_2/n_1$の場合、深さ$O(n_2)$の最適深度回路を設計する。
さらに、すべての量子ビット接続に対して$\Omega(\log(n))$と$\Omega(n_2)$ for $(n_1\times n_2)$-grid接続制約の深さ下界を確立し、構造がほぼ最適であることを示す。
関連論文リスト
- Towards Optimal Circuit Size for Sparse Quantum State Preparation [10.386753939552872]
我々は、$s$非ゼロ振幅を持つ$n$量子ビットスパース量子状態の準備を検討し、2つのアルゴリズムを提案する。
最初のアルゴリズムは$O(ns/log n + n)$ gatesを使用し、以前のメソッドを$O(log n)$で改善する。
2番目のアルゴリズムは、短いハミルトニアンパスを示す二進弦向けに調整されている。
論文 参考訳(メタデータ) (2024-04-08T02:13:40Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
任意の量子状態を作成するための新しい決定論的手法は、以前の方法よりも少ない量子資源を必要とすることを示す。
我々は、量子機械学習、ハミルトンシミュレーション、方程式の線形系を解くことなど、この能力が役立ついくつかのアプリケーションを強調した。
論文 参考訳(メタデータ) (2023-03-03T18:23:20Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
すべての$delta>0に対して、$はCNFと近似次数$Omega(n1-delta)の式を構築し、基本的には$nの自明な上限に一致する。
すべての$delta>0$に対して、これらのモデルは$Omega(n1-delta)$、$Omega(n/4kk2)1-delta$、$Omega(n/4kk2)1-delta$が必要です。
論文 参考訳(メタデータ) (2022-09-04T10:01:39Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
量子順序付き二項決定図($OBDD$)モデルについて検討する。
入力変数の任意の順序で、OBDDの下位境界と上位境界を証明します。
read$k$-times Ordered Binary Decision Diagrams (k$-OBDD$)の幅の階層を拡張します。
論文 参考訳(メタデータ) (2022-04-22T12:37:56Z) - Optimal (controlled) quantum state preparation and improved unitary
synthesis by quantum circuits with any number of ancillary qubits [20.270300647783003]
制御量子状態準備(CQSP)は、与えられた$n$-qubit状態に対するすべての$iin 0,1k$に対して、$|irangle |0nrangleから |irangle |psi_irangle $への変換を提供することを目的としている。
我々は、深さ$Oleft(n+k+frac2n+kn+k+mright)$とサイズ$Oleft(2n+kright)$のCQSPを実装するための量子回路を構築する。
論文 参考訳(メタデータ) (2022-02-23T04:19:57Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
この問題は量子アルゴリズム設計、ハミルトニアンシミュレーション、量子機械学習において基本的な重要性を持っているが、その回路深さと大きさの複雑さは、アシラリー量子ビットが利用可能である時点では未解決のままである。
本稿では,$psi_vrangle$を奥行きで作成できる$m$Acillary qubitsを用いた量子回路の効率的な構築について検討する。
我々の回路は決定論的であり、状態を準備し、正確にユニタリを実行し、アシラリー量子ビットを厳密に利用し、深さは幅広いパラメータ状態において最適である。
論文 参考訳(メタデータ) (2021-08-13T09:47:11Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
すべての決定木に対して、与えられた順序 $ellsqrtbinomdell (1+log n)ell-1,$ sum to at least $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, $c>0$ is a absolute constant。
論文 参考訳(メタデータ) (2020-08-24T06:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。