Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
- URL: http://arxiv.org/abs/2505.20876v3
- Date: Thu, 29 May 2025 09:22:04 GMT
- Title: Stereo Radargrammetry Using Deep Learning from Airborne SAR Images
- Authors: Tatsuya Sasayama, Shintaro Ito, Koichi Ito, Takafumi Aoki,
- Abstract summary: We propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images.<n>We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method.<n>The proposed method suppresses the degradation of image quality by pixel without ground projection of the SAR image.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods. The project web page is available at: https://gsisaoki.github.io/IGARSS2025_sasayama/
Related papers
- AerialMegaDepth: Learning Aerial-Ground Reconstruction and View Synthesis [57.249817395828174]
We propose a scalable framework combining pseudo-synthetic renderings from 3D city-wide meshes with real, ground-level crowd-sourced images.<n>The pseudo-synthetic data simulates a wide range of aerial viewpoints, while the real, crowd-sourced images help improve visual fidelity for ground-level images.<n>Using this hybrid dataset, we fine-tune several state-of-the-art algorithms and achieve significant improvements on real-world, zero-shot aerial-ground tasks.
arXiv Detail & Related papers (2025-04-17T17:57:05Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - PolMERLIN: Self-Supervised Polarimetric Complex SAR Image Despeckling
with Masked Networks [2.580765958706854]
Despeckling is a crucial noise reduction task in improving the quality of synthetic aperture radar (SAR) images.
Existing methods deal solely with single-polarization images and cannot handle the multi-polarization images captured by modern satellites.
We propose a novel self-supervised despeckling approach called channel masking, which exploits the relationship between polarizations.
arXiv Detail & Related papers (2024-01-15T07:06:36Z) - SAR Despeckling via Regional Denoising Diffusion Probabilistic Model [6.154796320245652]
Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
This paper introduces a novel despeckling approach termed Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
arXiv Detail & Related papers (2024-01-06T04:34:46Z) - Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
We propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN)
We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.
arXiv Detail & Related papers (2023-11-02T13:57:48Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Deep-Learning-Based Single-Image Height Reconstruction from
Very-High-Resolution SAR Intensity Data [1.7894377200944511]
We present the first-ever demonstration of deep learning-based single image height prediction for the other important sensor modality in remote sensing: synthetic aperture radar (SAR) data.
Besides the adaptation of a convolutional neural network (CNN) architecture for SAR intensity images, we present a workflow for the generation of training data.
Since we put a particular emphasis on transferability, we are able to confirm that deep learning-based single-image height estimation is not only possible, but also transfers quite well to unseen data.
arXiv Detail & Related papers (2021-11-03T08:20:03Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
We propose a deep learning-based image retrieval approach using homography transformation augmented contrastive learning.
We also propose a training method for the DNNs induced by contrastive learning that does not require any labeling procedure.
arXiv Detail & Related papers (2021-09-21T17:27:07Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - SAR Image Despeckling Based on Convolutional Denoising Autoencoder [13.579420996461439]
In Synthetic Aperture Radar (SAR) imaging, despeckling is very important for image analysis.
In this paper, the limited scale of dataset make a efficient exploration by using convolutioal denoising autoencoder (C-DAE) to reconstruct the speckle-free SAR images.
arXiv Detail & Related papers (2020-11-30T09:02:25Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
despeckling is a crucial preliminary step in scene analysis algorithms.
Recent success of deep learning envisions a new generation of despeckling techniques.
We propose a self-supervised Bayesian despeckling method.
arXiv Detail & Related papers (2020-07-04T11:38:48Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z) - RDAnet: A Deep Learning Based Approach for Synthetic Aperture Radar
Image Formation [0.0]
We train a deep neural network that performs both the image formation and image processing tasks, integrating the SAR processing pipeline.
Results show that our integrated pipeline can output accurately classified SAR imagery with image quality comparable to those formed using a traditional algorithm.
arXiv Detail & Related papers (2020-01-22T18:44:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.