論文の概要: Langevin SDEs have unique transient dynamics
- arxiv url: http://arxiv.org/abs/2505.21770v1
- Date: Tue, 27 May 2025 21:06:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.29514
- Title: Langevin SDEs have unique transient dynamics
- Title(参考訳): ランゲヴィン SDE は一意な過渡ダイナミクスを持つ
- Authors: Vincent Guan, Joseph Janssen, Nicolas Lanzetti, Antonio Terpin, Geoffrey Schiebinger, Elina Robeva,
- Abstract要約: 我々は、ランゲヴィン SDE のドリフトと拡散項が時間的辺分布から合同に同定可能であることを証明した。
この構造的識別可能性の完全な特徴づけは、拡散が漂流を識別するために知られている必要があるという長年の仮定を排除している。
- 参考スコア(独自算出の注目度): 3.5558885788605337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The overdamped Langevin stochastic differential equation (SDE) is a classical physical model used for chemical, genetic, and hydrological dynamics. In this work, we prove that the drift and diffusion terms of a Langevin SDE are jointly identifiable from temporal marginal distributions if and only if the process is observed out of equilibrium. This complete characterization of structural identifiability removes the long-standing assumption that the diffusion must be known to identify the drift. We then complement our theory with experiments in the finite sample setting and study the practical identifiability of the drift and diffusion, in order to propose heuristics for optimal data collection.
- Abstract(参考訳): ランゲヴィン確率微分方程式(Langevin stochastic differential equation, SDE)は、化学・遺伝・流体力学で用いられる古典的な物理モデルである。
本研究では、ランゲヴィン SDE のドリフトと拡散項が、その過程が平衡から観測されている場合に限り、時間的境界分布から共同で識別可能であることを証明する。
この構造的識別可能性の完全な特徴づけは、拡散が漂流を識別するために知られている必要があるという長年の仮定を排除している。
次に, 有限標本設定実験を補完し, ドリフトと拡散の実用的同定可能性について検討し, 最適データ収集のためのヒューリスティックスを提案する。
関連論文リスト
- Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
低次元の潜伏空間にPDE状態を埋め込んだPDEシミュレーションのための潜伏拡散モデルを提案する。
我々のフレームワークは、オートエンコーダを使用して、異なるタイプのメッシュを統一された構造化潜在グリッドにマッピングし、複雑なジオメトリをキャプチャします。
数値実験により,提案モデルは,精度と長期安定性の両方において,決定論的ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-03-28T16:44:28Z) - Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots [10.018568337210876]
APPEXは、時間境界のみから付加雑音SDEのドリフト、拡散、因果グラフを推定するために設計された反復アルゴリズムである。
APPEXはKulback-Leiblerの真の解への分岐を反復的に減少させ,線形付加雑音SDEのシミュレーションデータに対する効果を示す。
論文 参考訳(メタデータ) (2024-10-30T06:28:21Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Broadening Target Distributions for Accelerated Diffusion Models via a Novel Analysis Approach [49.97755400231656]
本研究では,新しいDDPMサンプリング器が,これまで考慮されていなかった3種類の分散クラスに対して高速化性能を実現することを示す。
この結果から, DDPM型加速サンプリング器におけるデータ次元$d$への依存性が改善された。
論文 参考訳(メタデータ) (2024-02-21T16:11:47Z) - Fisher information dissipation for time inhomogeneous stochastic
differential equations [7.076726009680242]
時間不均一な変数微分方程式に対するリアプノフ収束解析を提供する。
3つの典型的な例は、過度に破壊された、不可逆的なドリフト、および過度に破壊されたランゲヴィン力学である。
論文 参考訳(メタデータ) (2024-02-01T21:49:50Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
定常密度が干渉下でのシステムの挙動をモデル化する微分方程式を学習する。
古典的アプローチよりもよく、変数に対する見当たらない介入を一般化することを示します。
提案手法は,再生カーネルヒルベルト空間における拡散発生器の定常状態を表す新しい理論結果に基づく。
論文 参考訳(メタデータ) (2023-10-26T14:01:17Z) - Floquet systems with continuous dynamical symmetries: characterization, time-dependent Noether charge, and solvability [0.0]
連続力学対称性(CDS)を持つ量子フロケット系について検討する。
離散的なものとは違って、CDSはハミルトニアンの$H(t)$を強く制約し、フロケ状態をすべて得ることができる。
この結果はフロケ状態の体系的な解法を提供し、準エネルギー図のハイブリダイゼーションを避ける方法を説明する。
論文 参考訳(メタデータ) (2023-08-04T05:42:42Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
データから酸素抽出率(OEF)と脱酸素血液量(DBV)をより明瞭に決定する。
既存の推論手法では、DBVを過大評価しながら非常にノイズの多い、過小評価されたEFマップが得られる傾向にある。
本研究は, OEFとDBVの可算分布を推定できる確率論的機械学習手法について述べる。
論文 参考訳(メタデータ) (2022-03-11T10:47:16Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。