論文の概要: Learning geometry and topology via multi-chart flows
- arxiv url: http://arxiv.org/abs/2505.24665v1
- Date: Fri, 30 May 2025 14:54:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.010762
- Title: Learning geometry and topology via multi-chart flows
- Title(参考訳): マルチチャートフローによる幾何学とトポロジーの学習
- Authors: Hanlin Yu, Søren Hauberg, Marcelo Hartmann, Arto Klami, Georgios Arvanitidis,
- Abstract要約: 本稿では,低次元の潜在空間と周囲の空間をマッピングする正規化フローの退化学習手法を提案する。
次に、そのような多様体上の測地線を計算するための最初の数値アルゴリズムを開発する。
経験的に、このことがトポロジ推定の大幅な改善につながっていることを実証する。
- 参考スコア(独自算出の注目度): 15.233449612225405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real world data often lie on low-dimensional Riemannian manifolds embedded in high-dimensional spaces. This motivates learning degenerate normalizing flows that map between the ambient space and a low-dimensional latent space. However, if the manifold has a non-trivial topology, it can never be correctly learned using a single flow. Instead multiple flows must be `glued together'. In this paper, we first propose the general training scheme for learning such a collection of flows, and secondly we develop the first numerical algorithms for computing geodesics on such manifolds. Empirically, we demonstrate that this leads to highly significant improvements in topology estimation.
- Abstract(参考訳): 実世界データは、しばしば高次元空間に埋め込まれた低次元リーマン多様体の上に置かれる。
このことは、学習が周囲空間と低次元潜在空間の間の写像となる正規化フローの退化を動機付けている。
しかし、多様体が非自明な位相を持つならば、それは単一のフローで正しく学習することはできない。
代わりに、複数のフローは 'glued together' でなければならない。
本稿では,まず,そのような流れの集合を学習するための一般的な学習手法を提案し,次に,そのような多様体上の測地線を計算するための最初の数値アルゴリズムを開発する。
経験的に、このことがトポロジ推定の大幅な改善につながっていることを実証する。
関連論文リスト
- Decoder ensembling for learned latent geometries [15.484595752241122]
我々は、関連する予想多様体上の測地線を容易に計算する方法を示す。
このシンプルで信頼性が高く、簡単に使える潜在測地に一歩近づきます。
論文 参考訳(メタデータ) (2024-08-14T12:35:41Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Canonical normalizing flows for manifold learning [12.169916344037585]
そこで本研究では,新しい目的によって変換行列を強制し,顕著で非退化的な基底関数をほとんど持たない正準多様体学習フロー法を提案する。
正準多様体の流れは潜在空間をより効率的に利用し、データを表現するために顕著で異なる次元を自動生成する。
論文 参考訳(メタデータ) (2023-10-19T13:48:05Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - Continuous normalizing flows on manifolds [0.342658286826597]
本稿では,最近導入されたニューラルODEと連続正規化フローを任意の滑らかな多様体に拡張する方法について述べる。
本稿では,これらの空間上のベクトル場をパラメータ化するための一般的な手法を提案する。
論文 参考訳(メタデータ) (2021-03-14T15:35:19Z) - Quadric hypersurface intersection for manifold learning in feature space [52.83976795260532]
適度な高次元と大きなデータセットに適した多様体学習技術。
この手法は、二次超曲面の交点という形で訓練データから学習される。
テスト時、この多様体は任意の新しい点に対する外れ値スコアを導入するのに使うことができる。
論文 参考訳(メタデータ) (2021-02-11T18:52:08Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Neural Ordinary Differential Equations on Manifolds [0.342658286826597]
近年、ニューラルODEに基づくユークリッド空間の正規化フローは大きな可能性を秘めているが、同じ制限を被っている。
ベクトル場がこれらの空間上の可逆写像の柔軟なクラスをパラメータ化するための一般的なフレームワークを提供する方法を示す。
論文 参考訳(メタデータ) (2020-06-11T17:56:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。