Framework of a multiscale data-driven DT of the musculoskeletal system
- URL: http://arxiv.org/abs/2506.11821v2
- Date: Fri, 25 Jul 2025 12:34:11 GMT
- Title: Framework of a multiscale data-driven DT of the musculoskeletal system
- Authors: Martina Paccini, Simone Cammarasana, Giuseppe Patanè,
- Abstract summary: Musculoskeletal disorders (MSDs) are a leading cause of disability worldwide.<n>This paper introduces the Musculoskeletal Digital Twin (MS-DT), a novel framework that integrates multiscale biomechanical data with computational modelling.
- Score: 5.95624397453931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Musculoskeletal disorders (MSDs) are a leading cause of disability worldwide, requiring advanced diagnostic and therapeutic tools for personalised assessment and treatment. Effective management of MSDs involves the interaction of heterogeneous data sources, making the Digital Twin (DT) paradigm a valuable option. This paper introduces the Musculoskeletal Digital Twin (MS-DT), a novel framework that integrates multiscale biomechanical data with computational modelling to create a detailed, patient-specific representation of the musculoskeletal system. By combining motion capture, ultrasound imaging, electromyography, and medical imaging, the MS-DT enables the analysis of spinal kinematics, posture, and muscle function. An interactive visualisation platform provides clinicians and researchers with an intuitive interface for exploring biomechanical parameters and tracking patient-specific changes. Results demonstrate the effectiveness of MS-DT in extracting precise kinematic and dynamic tissue features, offering a comprehensive tool for monitoring spine biomechanics and rehabilitation. This framework provides high-fidelity modelling and real-time visualization to improve patient-specific diagnosis and intervention planning.
Related papers
- ClipGS: Clippable Gaussian Splatting for Interactive Cinematic Visualization of Volumetric Medical Data [51.095474325541794]
We introduce ClipGS, an innovative Gaussian splatting framework with the clipping plane supported, for interactive cinematic visualization of medical data.<n>We validate our method on five volumetric medical data, and reach an average 36.635 PSNR rendering quality with 156 FPS and 16.1 MB model size.
arXiv Detail & Related papers (2025-07-09T08:24:28Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - Zero-shot Autonomous Microscopy for Scalable and Intelligent Characterization of 2D Materials [41.856704526703595]
characterization of atomic-scale materials traditionally requires human experts with months to years of specialized training.<n>This bottleneck drives demand for fully autonomous experimentation systems capable of comprehending research objectives without requiring large training datasets.<n>We present ATOMIC, an end-to-end framework that integrates foundation models to enable fully autonomous, zero-shot characterization of 2D materials.
arXiv Detail & Related papers (2025-04-14T14:49:45Z) - Interactive Tumor Progression Modeling via Sketch-Based Image Editing [54.47725383502915]
We propose SkEditTumor, a sketch-based diffusion model for controllable tumor progression editing.<n>By leveraging sketches as structural priors, our method enables precise modifications of tumor regions while maintaining structural integrity and visual realism.<n>Our contributions include a novel integration of sketches with diffusion models for medical image editing, fine-grained control over tumor progression visualization, and extensive validation across multiple datasets, setting a new benchmark in the field.
arXiv Detail & Related papers (2025-03-10T00:04:19Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.<n>Our findings illustrate significant advancements in the precision of segmentation and classification.<n>This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - SkelMamba: A State Space Model for Efficient Skeleton Action Recognition of Neurological Disorders [14.304356695180005]
We introduce a novel state-space model (SSM)-based framework for skeleton-based human action recognition.<n>Our model captures local joint interactions and global motion patterns across multiple body parts.<n>This gait-aware decomposition enhances the ability to identify subtle motion patterns critical in medical diagnosis.
arXiv Detail & Related papers (2024-11-29T08:43:52Z) - An Ensemble Approach for Brain Tumor Segmentation and Synthesis [0.12777007405746044]
The integration of machine learning in magnetic resonance imaging (MRI) is proving to be incredibly effective.
Deep learning models utilize multiple layers of processing to capture intricate details of complex data.
We propose a deep learning framework that ensembles state-of-the-art architectures to achieve accurate segmentation.
arXiv Detail & Related papers (2024-11-26T17:28:51Z) - Scalable Drift Monitoring in Medical Imaging AI [37.1899538374058]
We develop MMC+, an enhanced framework for scalable drift monitoring.
It builds upon the CheXstray framework that introduced real-time drift detection for medical imaging AI models.
MMC+ offers a reliable and cost-effective alternative to continuous performance monitoring.
arXiv Detail & Related papers (2024-10-17T02:57:35Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Leveraging Digital Perceptual Technologies for Remote Perception and Analysis of Human Biomechanical Processes: A Contactless Approach for Workload and Joint Force Assessment [4.96669107440958]
This study presents an innovative computer vision framework designed to analyze human movements in industrial settings.
The framework allows for comprehensive scrutiny of human motion, providing valuable insights into kinematic patterns and kinetic data.
arXiv Detail & Related papers (2024-04-02T02:12:00Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
We propose a novel biomechanics-aware network that directly outputs 3D kinematics from two input views.
Our experiments demonstrate that the proposed approach, only trained on synthetic data, outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2024-02-20T17:33:40Z) - BOSS: Bones, Organs and Skin Shape Model [10.50175010474078]
We propose a deformable human shape and pose model that combines skin, internal organs, and bones, learned from CT images.
By modeling the statistical variations in a pose-normalized space using probabilistic PCA, our approach offers a holistic representation of the body.
arXiv Detail & Related papers (2023-03-08T22:31:24Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.