論文の概要: Unified theoretical guarantees for stability, consistency, and convergence in neural PDE solvers from non-IID data to physics-informed networks
- arxiv url: http://arxiv.org/abs/2409.05030v3
- Date: Fri, 30 May 2025 11:53:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.45039
- Title: Unified theoretical guarantees for stability, consistency, and convergence in neural PDE solvers from non-IID data to physics-informed networks
- Title(参考訳): 非IIDデータから物理インフォームドネットワークへのニューラルPDEソルバの安定性、一貫性、収束に関する統一理論保証
- Authors: Ronald Katende,
- Abstract要約: 現実的なトレーニング条件下では,ニューラルネットワークの安定性,一貫性,収束性に対処する統一的な理論的枠組みを確立する。
従属データを用いた標準教師付き学習では、勾配法に対して一様安定性境界を導出する。
ヘテロジニアスデータを用いたフェデレーション学習では、曲率認識の集約と情報理論の分岐によるモデル不整合性の定量化を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We establish a unified theoretical framework addressing the stability, consistency, and convergence of neural networks under realistic training conditions, specifically, in the presence of non-IID data, geometric constraints, and embedded physical laws. For standard supervised learning with dependent data, we derive uniform stability bounds for gradient-based methods using mixing coefficients and dynamic learning rates. In federated learning with heterogeneous data and non-Euclidean parameter spaces, we quantify model inconsistency via curvature-aware aggregation and information-theoretic divergence. For Physics-Informed Neural Networks (PINNs), we rigorously prove perturbation stability, residual consistency, Sobolev convergence, energy stability for conservation laws, and convergence under adaptive multi-domain refinements. Each result is grounded in variational analysis, compactness arguments, and universal approximation theorems in Sobolev spaces. Our theoretical guarantees are validated across parabolic, elliptic, and hyperbolic PDEs, confirming that residual minimization aligns with physical solution accuracy. This work offers a mathematically principled basis for designing robust, generalizable, and physically coherent neural architectures across diverse learning environments.
- Abstract(参考訳): 我々は、現実的な訓練条件下でのニューラルネットワークの安定性、一貫性、収束性、特に非IIDデータ、幾何学的制約、埋め込み物理法則の存在に対処する統一的な理論的枠組みを確立する。
従属データを用いた標準教師付き学習では,混合係数と動的学習率を用いた勾配法に対して一様安定性境界を導出する。
ヘテロジニアスデータと非ユークリッドパラメータ空間を用いたフェデレート学習では、曲率認識の集約と情報理論の分岐によるモデル不整合の定量化を行う。
物理情報ニューラルネットワーク (PINN) では, 摂動安定性, 残留一貫性, ソボレフ収束, 保存法則のエネルギー安定, 適応多領域改良の下での収束を厳密に証明する。
それぞれの結果は、ソボレフ空間における変分解析、コンパクト性論証、普遍近似定理に基礎を置いている。
我々の理論的保証は、放物型、楕円型、双曲型PDEにまたがって検証され、残留最小化が物理解の精度と一致することを確認した。
この研究は、様々な学習環境における堅牢で一般化可能で物理的に一貫性のあるニューラルネットワークを設計するための数学的に原則化された基礎を提供する。
関連論文リスト
- Evidential Physics-Informed Neural Networks [0.0]
本稿では,エビデンシャル・ディープ・ラーニングの原理に基づいて定式化された物理インフォームド・ニューラル・ニューラルネットワークの新たなクラスを提案する。
1次元および2次元非線形微分方程式を含む逆問題に対して、我々のモデルを適用する方法を示す。
論文 参考訳(メタデータ) (2025-01-27T10:01:10Z) - HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs [22.689531776611084]
本稿では,標準ニューラルネットワークと放射基底関数ネットワークを統合した適応型ハイブリッド残差ブロックを特徴とする新しいPINNであるHyResPINNを紹介する。
HyResPINNsの特徴は、各残差ブロック内で適応的な組み合わせパラメータを使用することで、ニューラルネットワークとRBFネットワークの動的重み付けを可能にすることである。
論文 参考訳(メタデータ) (2024-10-04T16:21:14Z) - Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
本研究では,ロバストトレーニングのためのシステムモデル拡張(Systematic Model Augmentation for Robust Training)という,ニューラルネットワークPDEの普遍的学習戦略を紹介する。
モデルの弱点に挑戦し改善することに集中することにより、SMARTはデータスカース条件下でのトレーニング中の一般化エラーを低減する。
論文 参考訳(メタデータ) (2024-09-04T04:18:25Z) - Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)の安定性と精度の向上を目的とした,新しい残差ベースアーキテクチャを提案する。
このアーキテクチャは、残りの接続を組み込むことで従来のニューラルネットワークを強化し、よりスムーズなウェイト更新を可能にし、バックプロパゲーション効率を向上させる。
特にSquared Residual Networkは、従来のニューラルネットワークと比較して安定性と精度の向上を実現し、堅牢なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-10T05:20:43Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Multi-fidelity physics constrained neural networks for dynamical systems [16.6396704642848]
マルチスケール物理制約ニューラルネットワーク(MSPCNN)を提案する。
MSPCNNは、異なるレベルの忠実度を持つデータを統一された潜在空間に組み込む新しい手法を提供する。
従来の手法とは異なり、MSPCNNは予測モデルをトレーニングするために複数の忠実度データを使用する。
論文 参考訳(メタデータ) (2024-02-03T05:05:26Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - DAE-PINN: A Physics-Informed Neural Network Model for Simulating
Differential-Algebraic Equations with Application to Power Networks [8.66798555194688]
DAE-PINNは非線形微分代数方程式の解軌跡を学習し、シミュレーションするための最初の効果的なディープラーニングフレームワークである。
我々のフレームワークは、ペナルティベースの手法を用いて、DAEを(近似的に)厳しい制約として満たすためにニューラルネットワークを強制する。
DAE-PINNの有効性と精度を3バス電力ネットワークの解軌跡を学習・シミュレーションすることで示す。
論文 参考訳(メタデータ) (2021-09-09T14:30:28Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。