論文の概要: Causal Operator Discovery in Partial Differential Equations via Counterfactual Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2506.20181v1
- Date: Wed, 25 Jun 2025 07:15:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.639557
- Title: Causal Operator Discovery in Partial Differential Equations via Counterfactual Physics-Informed Neural Networks
- Title(参考訳): 逆ファクト物理インフォームドニューラルネットワークによる部分微分方程式の因果作用素発見
- Authors: Ronald Katende,
- Abstract要約: 物理インフォームドニューラルネットワークと対実最小化を用いた偏微分方程式(PDE)の因果構造を発見するための原理的枠組みを開発する。
気候力学,腫瘍拡散,海流の総合的および実世界のデータセット上で,この枠組みを検証した。
本研究は、因果的PDE発見を、構造因果モデルと変分残差解析に基づく、抽出可能かつ解釈可能な推論タスクとして位置づける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a principled framework for discovering causal structure in partial differential equations (PDEs) using physics-informed neural networks and counterfactual perturbations. Unlike classical residual minimization or sparse regression methods, our approach quantifies operator-level necessity through functional interventions on the governing dynamics. We introduce causal sensitivity indices and structural deviation metrics to assess the influence of candidate differential operators within neural surrogates. Theoretically, we prove exact recovery of the causal operator support under restricted isometry or mutual coherence conditions, with residual bounds guaranteeing identifiability. Empirically, we validate the framework on both synthetic and real-world datasets across climate dynamics, tumor diffusion, and ocean flows. Our method consistently recovers governing operators even under noise, redundancy, and data scarcity, outperforming standard PINNs and DeepONets in structural fidelity. This work positions causal PDE discovery as a tractable and interpretable inference task grounded in structural causal models and variational residual analysis.
- Abstract(参考訳): 物理インフォームドニューラルネットワークと対実摂動を用いた偏微分方程式(PDE)の因果構造を発見するための原理的枠組みを開発する。
古典的残留最小化法やスパース回帰法とは異なり,本手法は制御力学の関数的介入を通じて演算子レベルの必要性を定量化する。
本研究は,ニューラルサロゲート内の候補微分作用素の影響を評価するために,因果感度指標と構造偏差指標を導入する。
理論的には、厳密な等尺性や相互整合性条件下での因果演算子支持の正確な回復を、同定可能性を保証する残差で証明する。
経験的に、気候力学、腫瘍拡散、海洋流の合成および実世界のデータセット上で、このフレームワークを検証した。
提案手法は, ノイズ, 冗長性, データの不足下においても, オペレータを継続的に回復し, 通常のPINNやDeepONetsよりも構造的忠実度が高い。
本研究は、因果的PDE発見を、構造因果モデルと変分残差解析に基づく、抽出可能かつ解釈可能な推論タスクとして位置づける。
関連論文リスト
- Stability Analysis of Physics-Informed Neural Networks via Variational Coercivity, Perturbation Bounds, and Concentration Estimates [0.0]
PINNは、サンプルコロケーション点上の残差に基づく損失を最小限に抑え、偏微分方程式(PDE)の近似解を導出する。
ネットワーク出力における有界摂動が、残留成分と教師付き損失成分の両方を通してどのように伝播するかを定量化する決定論的安定性境界を導出する。
この研究は、PINNに数学的に基礎を置き、実際に適用可能な安定性の枠組みを提供し、ロバストトレーニングにおける演算子構造、サンプリング設計、機能正則性の役割を明確にする。
論文 参考訳(メタデータ) (2025-06-16T14:41:15Z) - From Theory to Application: A Practical Introduction to Neural Operators in Scientific Computing [0.0]
この研究は、Deep Operator Networks (DeepONet) や主成分分析に基づくニューラルネットワーク (PCANet) などの基礎モデルをカバーする。
レビューでは、ベイズ推論問題の代理として神経オペレーターを適用し、精度を維持しながら後部推論を加速させる効果を示した。
残差ベースのエラー修正やマルチレベルトレーニングなど、これらの問題に対処する新たな戦略を概説する。
論文 参考訳(メタデータ) (2025-03-07T17:25:25Z) - Evidential Physics-Informed Neural Networks [0.0]
本稿では,エビデンシャル・ディープ・ラーニングの原理に基づいて定式化された物理インフォームド・ニューラル・ニューラルネットワークの新たなクラスを提案する。
1次元および2次元非線形微分方程式を含む逆問題に対して、我々のモデルを適用する方法を示す。
論文 参考訳(メタデータ) (2025-01-27T10:01:10Z) - Disentangled Representation Learning for Parametric Partial Differential Equations [31.240283037552427]
ニューラル演算子パラメータから不整合表現を学習するための新しいパラダイムを提案する。
DisentangOは、ブラックボックス・ニューラル・オペレーターパラメータに埋め込まれた変動の潜在的物理的要因を明らかにし、取り除くように設計された、新しいハイパーニューラル・オペレーターアーキテクチャである。
本研究では、DentangOが有意義かつ解釈可能な潜在特徴を効果的に抽出し、ニューラルネットワークフレームワークにおける予測性能と身体的理解の分離を橋渡しすることを示す。
論文 参考訳(メタデータ) (2024-10-03T01:40:39Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
本研究では、ニューラルネットワークをベースとしたデータ駆動型フレームワークであるinVAErtネットワークを用いて、剛体力学系のディジタル双対解析を強化する。
InVAErtネットワークの柔軟性と有効性について,合成データから欠落成分を含む実データへの6成分ループ型パラメータ血行動態モデルの生理的逆転の文脈で示す。
論文 参考訳(メタデータ) (2024-08-15T17:07:40Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - A Neural Framework for Generalized Causal Sensitivity Analysis [78.71545648682705]
本稿では,因果感受性分析のためのニューラルネットワークフレームワークであるNeuralCSAを提案する。
我々は、NeuralCSAが関心の因果クエリに有効な境界を推測できることを理論的に保証する。
論文 参考訳(メタデータ) (2023-11-27T17:40:02Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。