論文の概要: SING: SDE Inference via Natural Gradients
- arxiv url: http://arxiv.org/abs/2506.17796v1
- Date: Sat, 21 Jun 2025 19:36:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.589836
- Title: SING: SDE Inference via Natural Gradients
- Title(参考訳): SING:自然勾配によるSDE推論
- Authors: Amber Hu, Henry Smith, Scott Linderman,
- Abstract要約: 本稿では,SDE推論を自然勾配(Sing)を用いて提案し,モデルと変分後部の基底幾何学を効率的に活用する。
SINGは、難解な積分を近似し、計算を時間内に並列化することにより、潜在SDEモデルの高速かつ信頼性の高い推論を可能にする。
SINGは、様々なデータセットにおける状態推定とドリフト推定において、先行手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent stochastic differential equation (SDE) models are important tools for the unsupervised discovery of dynamical systems from data, with applications ranging from engineering to neuroscience. In these complex domains, exact posterior inference of the latent state path is typically intractable, motivating the use of approximate methods such as variational inference (VI). However, existing VI methods for inference in latent SDEs often suffer from slow convergence and numerical instability. Here, we propose SDE Inference via Natural Gradients (SING), a method that leverages natural gradient VI to efficiently exploit the underlying geometry of the model and variational posterior. SING enables fast and reliable inference in latent SDE models by approximating intractable integrals and parallelizing computations in time. We provide theoretical guarantees that SING will approximately optimize the intractable, continuous-time objective of interest. Moreover, we demonstrate that better state inference enables more accurate estimation of nonlinear drift functions using, for example, Gaussian process SDE models. SING outperforms prior methods in state inference and drift estimation on a variety of datasets, including a challenging application to modeling neural dynamics in freely behaving animals. Altogether, our results illustrate the potential of SING as a tool for accurate inference in complex dynamical systems, especially those characterized by limited prior knowledge and non-conjugate structure.
- Abstract(参考訳): 潜在確率微分方程式(SDE)モデルは、工学から神経科学まで、データから動的システムの教師なし発見のための重要なツールである。
これらの複雑な領域では、潜伏状態経路の正確な後部推論は、典型的には難解であり、変分推論(VI)のような近似手法の使用を動機付けている。
しかし、潜在SDEにおける既存のVI法は、収束が遅いことと数値不安定性に悩まされることが多い。
そこで本研究では,自然勾配 VI を利用したSDE推論手法を提案する。
SINGは、難解な積分を近似し、計算を時間内に並列化することにより、潜在SDEモデルの高速かつ信頼性の高い推論を可能にする。
我々は、SINGが興味のある難易度、継続的な目標をほぼ最適化することを理論的に保証する。
さらに,ガウス過程SDEモデルなどを用いて,より正確な非線形ドリフト関数推定が可能であることを示す。
SINGは、様々なデータセットで状態推論とドリフト推定の先行手法よりも優れており、自由行動動物におけるニューラルダイナミクスをモデル化するための挑戦的な応用を含んでいる。
また,SINGが複雑な力学系,特に限定的な事前知識と非共役構造を特徴とする正確な推論ツールとしての可能性を示した。
関連論文リスト
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Foundation Inference Models for Stochastic Differential Equations: A Transformer-based Approach for Zero-shot Function Estimation [3.005912045854039]
本稿では,SDEのドリフトと拡散関数を正確にゼロショットで推定できる変換器を用いた認識モデルであるFIM-SDE(Foundation Inference Model for SDEs)を紹介する。
我々は,FIM-SDEと同一(事前訓練)のFIM-SDEが,多種多様な合成および実世界のプロセスにわたって頑健なゼロショット関数推定を実現することを実証した。
論文 参考訳(メタデータ) (2025-02-26T11:04:02Z) - A Deep Learning approach for parametrized and time dependent Partial Differential Equations using Dimensionality Reduction and Neural ODEs [46.685771141109306]
時間依存・パラメトリック・(典型的には)非線形PDEに対する古典的数値解法と類似した自己回帰・データ駆動手法を提案する。
DRを活用することで、より正確な予測を提供するだけでなく、より軽量でより高速なディープラーニングモデルを提供できることを示す。
論文 参考訳(メタデータ) (2025-02-12T11:16:15Z) - Neural SDEs as a Unified Approach to Continuous-Domain Sequence Modeling [3.8980564330208662]
本稿では,連続シーケンスモデリングに対する新しい直感的なアプローチを提案する。
本手法は, 時系列データを, 基礎となる連続力学系からのtextitdiscrete サンプルとして解釈する。
我々は、ニューラルネットワークSDEモデルの効率的なトレーニングのための、最大原理的目的とテクスティシミュレーションなしスキームを導出する。
論文 参考訳(メタデータ) (2025-01-31T03:47:22Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data [3.686808512438363]
実世界の時系列データにおける不規則サンプリング間隔と欠落値は,従来の手法の課題である。
本稿では,Langevin-type SDE,Linear Noise SDE,Geometric SDEの3つの安定クラスを提案する。
本研究は,実世界の不規則時系列データを扱う上で,提案手法の有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-22T22:00:03Z) - PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers [40.097474800631]
時間依存偏微分方程式(PDE)は、科学や工学においてユビキタスである。
ディープニューラルネットワークに基づくサロゲートへの関心が高まっている。
論文 参考訳(メタデータ) (2023-08-10T17:53:05Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
格子独立モデル学習偏微分方程式(PDE)を雑音および不規則格子上の部分的な観測から導入する。
本稿では、効率的な確率的フレームワークとデータ効率とグリッド独立性を改善するための新しい設計エンコーダを備えた時空間連続型ニューラルネットワークPDEモデルを提案する。
論文 参考訳(メタデータ) (2023-07-09T06:53:59Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
最近の機械学習(ML)モデルでは、高解像度信号において重要なダイナミクスを捉えることが約束されている。
この研究は、低解像度のダウンサンプリング機能で重要な情報が失われることがしばしばあることを示している。
本稿では,高度な時系列シーケンスモデリングと最先端のニューラルPDEソルバの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-16T06:13:01Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
The Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs。
我々は,このような潜在力学を効果的に学習し,長期的安定性を確保するために,新たな学習目標を導入する。
更新対象の寸法が最大128倍、速度が最大15倍向上し、競争精度が向上した。
論文 参考訳(メタデータ) (2022-06-15T17:31:24Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Identifying Latent Stochastic Differential Equations [29.103393300261587]
本研究では,高次元時系列データから潜時微分方程式(SDE)を学習する手法を提案する。
提案手法は,自己教師付き学習手法を用いて,環境空間から潜時空間へのマッピングと,基礎となるSDE係数を学習する。
提案手法の検証には,SDEの基盤となる複数のビデオ処理タスク,および実世界のデータセットを用いて行う。
論文 参考訳(メタデータ) (2020-07-12T19:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。