HybridQ: Hybrid Classical-Quantum Generative Adversarial Network for Skin Disease Image Generation
- URL: http://arxiv.org/abs/2506.21015v1
- Date: Thu, 26 Jun 2025 05:14:45 GMT
- Title: HybridQ: Hybrid Classical-Quantum Generative Adversarial Network for Skin Disease Image Generation
- Authors: Qingyue Jiao, Kangyu Zheng, Yiyu Shi, Zhiding Liang,
- Abstract summary: We introduce the first classical-quantum generative adversarial network (GAN) capable of generating color medical images.<n>Our model outperforms classical deep convolutional GANs and existing hybrid classical-quantum GANs in both image generation quality and classification performance boost when used as data augmentation.
- Score: 4.613177379949412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning-assisted diagnosis is gaining traction in skin disease detection, but training effective models requires large amounts of high-quality data. Skin disease datasets often suffer from class imbalance, privacy concerns, and object bias, making data augmentation essential. While classical generative models are widely used, they demand extensive computational resources and lengthy training time. Quantum computing offers a promising alternative, but existing quantum-based image generation methods can only yield grayscale low-quality images. Through a novel classical-quantum latent space fusion technique, our work overcomes this limitation and introduces the first classical-quantum generative adversarial network (GAN) capable of generating color medical images. Our model outperforms classical deep convolutional GANs and existing hybrid classical-quantum GANs in both image generation quality and classification performance boost when used as data augmentation. Moreover, the performance boost is comparable with that achieved using state-of-the-art classical generative models, yet with over 25 times fewer parameters and 10 times fewer training epochs. Such results suggest a promising future for quantum image generation as quantum hardware advances. Finally, we demonstrate the robust performance of our model on real IBM quantum machine with hardware noise.
Related papers
- HQViT: Hybrid Quantum Vision Transformer for Image Classification [48.72766405978677]
We propose a Hybrid Quantum Vision Transformer (HQViT) to accelerate model training while enhancing model performance.<n>HQViT introduces whole-image processing with amplitude encoding to better preserve global image information without additional positional encoding.<n>Experiments across various computer vision datasets demonstrate that HQViT outperforms existing models, achieving a maximum improvement of up to $10.9%$ (on the MNIST 10-classification task) over the state of the art.
arXiv Detail & Related papers (2025-04-03T16:13:34Z) - Quantum Generative Models for Image Generation: Insights from MNIST and MedMNIST [0.0]
We introduce two novel noise strategies: intrinsic quantum-generated noise and a tailored noise scheduling mechanism.<n>We evaluate our model on MNIST and MedMNIST datasets to examine its feasibility and performance.
arXiv Detail & Related papers (2025-03-30T06:36:22Z) - Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.<n>This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.<n>The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Quantum Generative Learning for High-Resolution Medical Image Generation [1.189046876525661]
Existing quantum generative adversarial networks (QGANs) fail to generate high-quality images due to their patch-based, pixel-wise learning approaches.<n>We propose a quantum image generative learning (QIGL) approach for high-quality medical image generation.
arXiv Detail & Related papers (2024-06-19T04:04:32Z) - Latent Style-based Quantum GAN for high-quality Image Generation [28.3231031892146]
We introduce the Latent Style-based Quantum GAN (LaSt-QGAN), which employs a hybrid classical-quantum approach in training Generative Adversarial Networks (GANs)
Our LaSt-QGAN can be successfully trained on realistic computer vision datasets beyond the standard MNIST, namely Fashion MNIST (fashion products) and SAT4 (Earth Observation images) with 10 qubits.
arXiv Detail & Related papers (2024-06-04T18:00:00Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Hybrid Quantum-Classical Generative Adversarial Network for High
Resolution Image Generation [14.098992977726942]
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems.
A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs.
Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework.
arXiv Detail & Related papers (2022-12-22T11:18:35Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.