Segmentation-Based Regression for Quantum Neural Networks
- URL: http://arxiv.org/abs/2507.00065v1
- Date: Fri, 27 Jun 2025 20:11:43 GMT
- Title: Segmentation-Based Regression for Quantum Neural Networks
- Authors: James C. Hateley,
- Abstract summary: Recent advances in quantum hardware motivate the development of algorithmic frameworks that integrate quantum sampling with classical inference.<n>This work introduces a segmentation-based regression method tailored to quantum neural networks (QNNs)<n>By casting the regression task as a constrained problem over a structured digit lattice, the method replaces continuous inference with interpretable and tractable updates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in quantum hardware motivate the development of algorithmic frameworks that integrate quantum sampling with classical inference. This work introduces a segmentation-based regression method tailored to quantum neural networks (QNNs), where real-valued outputs are encoded as base-b digit sequences and inferred through greedy digitwise optimization. By casting the regression task as a constrained combinatorial problem over a structured digit lattice, the method replaces continuous inference with interpretable and tractable updates. A hybrid quantum-classical architecture is employed: quantum circuits generate candidate digits through projective measurement, while classical forward models evaluate these candidates based on task-specific error functionals. We formalize the algorithm from first principles, derive convergence and complexity bounds, and demonstrate its effectiveness on inverse problems involving PDE-constrained models. The resulting framework provides a robust, high-precision interface between quantum outputs and continuous scientific inference.
Related papers
- Unitary Scrambling and Collapse: A Quantum Diffusion Framework for Generative Modeling [5.258882634977828]
We propose QSC-Diffusion, the first fully quantum diffusion-based framework for image generation.<n>We employ parameterized quantum circuits with measurement-induced collapse for reverse denoising.<n>Remarkably, QSC-Diffusion achieves competitive FID scores across multiple datasets.
arXiv Detail & Related papers (2025-06-12T11:00:21Z) - RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations [48.670876200492415]
Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers.<n>We propose $rho$DARTS, a differentiable Quantum Architecture Search (QAS) algorithm that models the search process as the evolution of a quantum mixed state.
arXiv Detail & Related papers (2025-06-04T08:30:35Z) - Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Scalable Imaginary Time Evolution with Neural Network Quantum States [0.0]
The representation of a quantum wave function as a neural network quantum state (NQS) provides a powerful variational ansatz for finding the ground states of many-body quantum systems.
We introduce an approach that bypasses the computation of the metric tensor and instead relies exclusively on first-order descent with Euclidean metric.
We make this method adaptive and stable by determining the optimal time step and keeping the target fixed until the energy of the NQS decreases.
arXiv Detail & Related papers (2023-07-28T12:26:43Z) - Explainable quantum regression algorithm with encoded data structure [0.0]
In this paper, we construct the first interpretable quantum regression algorithm.<n>The encoded data structure reduces the time complexity of computing the regression map.<n>We envision potential quantum utilities with multi-qubit gates implemented in neutral cold atoms and ions.
arXiv Detail & Related papers (2023-07-07T00:30:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.