論文の概要: Trainability of Quantum Models Beyond Known Classical Simulability
- arxiv url: http://arxiv.org/abs/2507.06344v1
- Date: Tue, 08 Jul 2025 19:10:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.366617
- Title: Trainability of Quantum Models Beyond Known Classical Simulability
- Title(参考訳): 古典的シミュラビリティを超える量子モデルのトレーニング可能性
- Authors: Sabri Meyer, Francesco Scala, Francesco Tacchino, Aurelien Lucchi,
- Abstract要約: 変分量子アルゴリズム(VQA)は、短期量子コンピューティングの候補として有望である。
システムサイズが指数関数的に消える不毛な高原のため、スケーラビリティの課題に直面している。
最近の予想では、バレンプラトーを避けることは本質的に古典的なシミュラビリティにつながる可能性がある。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational Quantum Algorithms (VQAs) are promising candidates for near-term quantum computing, yet they face scalability challenges due to barren plateaus, where gradients vanish exponentially in the system size. Recent conjectures suggest that avoiding barren plateaus might inherently lead to classical simulability, thus limiting the opportunities for quantum advantage. In this work, we advance the theoretical understanding of the relationship between the trainability and computational complexity of VQAs, thus directly addressing the conjecture. We introduce the Linear Clifford Encoder (LCE), a novel technique that ensures constant-scaling gradient statistics on optimization landscape regions that are close to Clifford circuits. Additionally, we leverage classical Taylor surrogates to reveal computational complexity phase transitions from polynomial to super-polynomial as the initialization region size increases. Combining these results, we reveal a deeper link between trainability and computational complexity, and analytically prove that barren plateaus can be avoided in regions for which no classical surrogate is known to exist. Furthermore, numerical experiments on LCE transformed landscapes confirm in practice the existence of a super-polynomially complex ``transition zone'' where gradients decay polynomially. These findings indicate a plausible path to practically relevant, barren plateau-free variational models with potential for quantum advantage.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)は、短期量子コンピューティングの候補として期待されているが、システムサイズで勾配が指数関数的に消える不毛な高原によるスケーラビリティの問題に直面している。
最近の予想では、バレン高原を避けることは本質的に古典的なシミュラビリティをもたらす可能性があり、量子的優位性の機会を制限することが示唆されている。
本稿では,VQAのトレーニング可能性と計算複雑性の関係を理論的に理解し,この予想に対処する。
リニア・クリフォード・エンコーダ (LCE) は, クリフォード回路に近い最適化景観領域において, 一定スケーリング勾配統計量を保証する新しい手法である。
さらに、古典的なテイラー代理を利用して、初期化領域のサイズが大きくなるにつれて多項式から超多項式への計算複雑性相転移を明らかにする。
これらの結果を組み合わせることで、トレーニング容易性と計算複雑性の深い関係が明らかとなり、古典的なサロゲートが存在しない地域ではバレンプラトーを回避できることが解析的に証明された。
さらに、LCE変換ランドスケープに関する数値実験により、実際には勾配が多項式的に崩壊する超多項式複素 ` `transition zone'' の存在が確認されている。
これらの結果は、量子的優位性の可能性を持つ、実質的に関係のある、不規則なプラトーフリー変分モデルへのもっともらしい経路を示す。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Survey of Methods for Mitigating Barren Plateaus for Parameterized Quantum Circuits [0.0]
バレンプラトーは、損失関数の平坦なプラトーに繋がるハイブリッド量子古典アルゴリズムにとって、恐ろしい挑戦である。
本稿では, 古典的な勾配の解釈と, コスト関数, 絡み合い, バレン高原への戦略を掘り下げる概念的視点を提供する。
論文 参考訳(メタデータ) (2024-06-20T13:10:26Z) - Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing [0.0]
バレン高原を避けることができる構造も、古典的な損失を効率的にシミュレートするために利用できますか?
一般に用いられているバレン高原の証明不可能なモデルもまた古典的にシミュレート可能であるという強い証拠を提示する。
我々の分析は、不毛の高原無地におけるパラメタライズド量子回路の情報処理能力の非古典性に深刻な疑問を呈している。
論文 参考訳(メタデータ) (2023-12-14T16:54:57Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
我々は、トポロジカルデータ解析のための改良された量子アルゴリズムを解析し、最適化する。
超二次量子スピードアップは乗法誤差近似をターゲットとする場合にのみ可能であることを示す。
数百億のトフォリを持つ量子回路は、古典的に難解なインスタンスを解くことができると我々は主張する。
論文 参考訳(メタデータ) (2022-09-27T17:56:15Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Beyond Barren Plateaus: Quantum Variational Algorithms Are Swamped With
Traps [0.0]
変分量子モデルは、よい初期推定が知られていない場合、訓練不可能であることが示される。
また,クエリのサブ指数数では,ノイズの多様さは不可能であることを示す。
論文 参考訳(メタデータ) (2022-05-11T21:55:42Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。