論文の概要: Quasi-Random Physics-informed Neural Networks
- arxiv url: http://arxiv.org/abs/2507.08121v1
- Date: Thu, 10 Jul 2025 19:15:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.153033
- Title: Quasi-Random Physics-informed Neural Networks
- Title(参考訳): 準ランダム物理インフォームドニューラルネットワーク
- Authors: Tianchi Yu, Ivan Oseledets,
- Abstract要約: 本稿では,領域から直接のランダムな点ではなく,低差分シーケンスを用いてサンプリングする準ランダム物理情報ニューラルネットワークを提案する。
実験により、QRPINNは、特に高次元PDEにおいて、PINNといくつかの代表的な適応サンプリング手法を著しく上回っていることが示された。
- 参考スコア(独自算出の注目度): 4.347494885647007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks have shown promise in solving partial differential equations (PDEs) by integrating physical constraints into neural network training, but their performance is sensitive to the sampling of points. Based on the impressive performance of quasi Monte-Carlo methods in high dimensional problems, this paper proposes Quasi-Random Physics-Informed Neural Networks (QRPINNs), which use low-discrepancy sequences for sampling instead of random points directly from the domain. Theoretically, QRPINNs have been proven to have a better convergence rate than PINNs. Empirically, experiments demonstrate that QRPINNs significantly outperform PINNs and some representative adaptive sampling methods, especially in high-dimensional PDEs. Furthermore, combining QRPINNs with adaptive sampling can further improve the performance.
- Abstract(参考訳): 物理インフォームドニューラルネットワークは、ニューラルネットワークトレーニングに物理的な制約を統合することで、偏微分方程式(PDE)を解くことを約束しているが、それらの性能は点のサンプリングに敏感である。
準モンテカルロ法の高次元問題における印象的な性能に基づいて,領域から直接のランダムな点ではなく,低分散配列を用いてサンプリングする準ランダム物理情報ニューラルネットワーク(QRPINN)を提案する。
理論的には、QRPINNはPINNよりも収束率が高いことが証明されている。
実験的に、QRPINNは、特に高次元PDEにおいて、PINNといくつかの代表的な適応サンプリング手法を著しく上回ることを示した。
さらに、QRPINNとアダプティブサンプリングを組み合わせることで、パフォーマンスをさらに向上させることができる。
関連論文リスト
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法において高い期待を得た
以前の研究では、PINNの伝播不良現象が観察された。
本稿では,伝播不良とその根本原因に関する公式かつ詳細な研究について述べる。
論文 参考訳(メタデータ) (2025-02-02T13:56:38Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Parallel-in-Time Solutions with Random Projection Neural Networks [0.07282584715927627]
本稿では、常微分方程式の解法であるパラレアルの基本的な並列時間法の一つを考察し、ニューラルネットワークを粗いプロパゲータとして採用することにより拡張する。
提案アルゴリズムの収束特性を理論的に解析し,ローレンツ方程式やバーガースの方程式を含むいくつかの例に対して有効性を示す。
論文 参考訳(メタデータ) (2024-08-19T07:32:41Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Feature Mapping in Physics-Informed Neural Networks (PINNs) [1.9819034119774483]
本研究では, Conjugate Kernel と Neural Tangent Kernel を限定した特徴マッピング層を用いた PINN の訓練力学について検討する。
より優れた代替として,条件付き正定値ラジアル基底関数を提案する。
論文 参考訳(メタデータ) (2024-02-10T13:51:09Z) - Moving Sampling Physics-informed Neural Networks induced by Moving Mesh PDE [4.460242992367118]
移動メッシュ法に基づくエンドツーエンド適応サンプリングニューラルネットワーク(MMPDE-Net)を提案する。
我々は,MMPDE-Netに基づく反復アルゴリズムを開発し,サンプリングポイントをより正確かつ制御しやすくする。
論文 参考訳(メタデータ) (2023-11-14T19:43:56Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Accelerating Physics-Informed Neural Network Training with Prior
Dictionaries [7.035456567972667]
我々は、先行辞書に基づく物理情報ニューラルネットワーク(PD-PINN)と呼ばれる変種を提案する。
PD-PINNはタスクの表現力を向上し、辞書が提供する特徴を捉えるのに役立つ。
特定の穏やかな条件下では、ニューラルネットワークによる予測誤差は、予測されたPDEの損失と境界条件によって境界付けられることが証明された。
論文 参考訳(メタデータ) (2020-04-17T10:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。