論文の概要: An Efficient Approach for Muscle Segmentation and 3D Reconstruction Using Keypoint Tracking in MRI Scan
- arxiv url: http://arxiv.org/abs/2507.08690v1
- Date: Fri, 11 Jul 2025 15:39:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.407218
- Title: An Efficient Approach for Muscle Segmentation and 3D Reconstruction Using Keypoint Tracking in MRI Scan
- Title(参考訳): MRIにおけるキーポイントトラッキングによる筋分節と3次元再構成の効率化
- Authors: Mengyuan Liu, Jeongkyu Lee,
- Abstract要約: 本研究は,キーポイント選択とルーカス・カナーデ光流を統合したキーポイント追跡に基づく,学習不要なセグメンテーション手法を提案する。
提案手法はキーポイント選択戦略に応じて0.6から0.7の範囲の平均Dice類似度係数(DSC)を実現する。
- 参考スコア(独自算出の注目度): 8.089892147270529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) enables non-invasive, high-resolution analysis of muscle structures. However, automated segmentation remains limited by high computational costs, reliance on large training datasets, and reduced accuracy in segmenting smaller muscles. Convolutional neural network (CNN)-based methods, while powerful, often suffer from substantial computational overhead, limited generalizability, and poor interpretability across diverse populations. This study proposes a training-free segmentation approach based on keypoint tracking, which integrates keypoint selection with Lucas-Kanade optical flow. The proposed method achieves a mean Dice similarity coefficient (DSC) ranging from 0.6 to 0.7, depending on the keypoint selection strategy, performing comparably to state-of-the-art CNN-based models while substantially reducing computational demands and enhancing interpretability. This scalable framework presents a robust and explainable alternative for muscle segmentation in clinical and research applications.
- Abstract(参考訳): MRI(MRI)は、非侵襲的で高分解能な筋構造解析を可能にする。
しかし、自動化セグメンテーションは、高い計算コスト、大規模なトレーニングデータセットへの依存、より小さな筋肉のセグメンテーションにおける精度の低下によって制限されている。
畳み込みニューラルネットワーク(CNN)ベースの手法は強力だが、多くの場合、計算オーバーヘッドがかなり高く、一般化性が制限され、多様な集団間での解釈が不十分である。
本研究は,キーポイント選択とルーカス・カナーデ光流を統合したキーポイント追跡に基づく,学習不要なセグメンテーション手法を提案する。
提案手法は,キーポイント選択戦略に応じて0.6から0.7の範囲の平均Dice類似度係数(DSC)を達成し,計算要求を大幅に低減し,解釈可能性の向上を図る。
このスケーラブルなフレームワークは、臨床および研究応用における筋分節の堅牢で説明可能な代替手段を提供する。
関連論文リスト
- ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation [11.248082139905865]
アノテーション付きデータとしてMRIシーケンスをモデル化するハイブリッドアーキテクチャを提案する。
本手法では, 深層保存型DeepVLab3バックボーンを用いて, それぞれのMRIスライスから高レベルなセマンティック特徴を抽出し, コンブLSTM層で構築した再帰的畳み込みヘッドを用いて, スライス間の情報統合を行う。
現状の2D, 3Dセグメンテーションモデルと比較して, 精度, リコール, IoU, Dice similarity Coefficient (DSC) およびロバストネスの点で優れた性能を示す。
論文 参考訳(メタデータ) (2025-06-24T14:56:55Z) - Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging [0.510750648708198]
心血管疾患の診断にはCTとMRIによる全肝分画が不可欠である。
既存の方法は、モダリティ固有のバイアスと、広範なラベル付きデータセットの必要性に苦慮している。
学生-教師アーキテクチャに基づく自己指導型学習フレームワークを用いて,全音節セグメンテーションのための基礎モデルを提案する。
論文 参考訳(メタデータ) (2025-03-24T14:47:54Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Fine-tuning -- a Transfer Learning approach [0.22344294014777952]
電子健康記録(EHR)の欠落は、この貴重な資源に欠落するデータが豊富にあるため、しばしば妨げられる。
既存の深い計算手法は、計算処理とダウンストリーム解析の両方を組み込んだエンドツーエンドのパイプラインに依存している。
本稿では,モジュール型深層学習型計算・分類パイプラインの開発について検討する。
論文 参考訳(メタデータ) (2024-11-06T14:18:23Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)を含む現在のモデルには限界がある。
我々は、モーションキャプチャーと表面筋電図センサからデータの空間的時間的相互作用をキャプチャする2Dフィルタを組み込んだ軽量CNNアーキテクチャであるhbox EmoL-SFANを紹介する。
論文 参考訳(メタデータ) (2024-06-07T12:01:37Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
QBSPECT(Quantitative bone single-photon emission Computed Tomography)は、平面骨シンチグラフィよりも骨転移をより定量的に評価する可能性を秘めています。
解剖学的領域-関心(ROI)のセグメント化は、まだ専門家による手動の記述に大きく依存しています。
本研究では,QBSPECT画像を病変,骨,背景に分割するための高速かつ堅牢な自動分割法を提案する。
論文 参考訳(メタデータ) (2021-04-17T19:03:52Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。