論文の概要: Physics-informed neural networks for high-dimensional solutions and snaking bifurcations in nonlinear lattices
- arxiv url: http://arxiv.org/abs/2507.09782v1
- Date: Sun, 13 Jul 2025 20:41:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.97679
- Title: Physics-informed neural networks for high-dimensional solutions and snaking bifurcations in nonlinear lattices
- Title(参考訳): 非線形格子における高次元解とスネーキング分岐に対する物理インフォームニューラルネットワーク
- Authors: Muhammad Luthfi Shahab, Fidya Almira Suheri, Rudy Kusdiantara, Hadi Susanto,
- Abstract要約: 本稿では,非線形格子の重要な課題に対処するための物理インフォームドニューラルネットワーク(PINN)に基づくフレームワークを提案する。
まず,格子モデルから生じる非線形系の解を,レバンス・マルカルトアルゴリズムを用いて近似するためにPINNを用いる。
次に、PINNと連続的な手法を結合して、スネーキング分岐図を計算して拡張する。
線形安定解析では、固有ベクトルを計算するためにPINNを適用し、Sturm-Liouville理論に則って出力制約を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a framework based on physics-informed neural networks (PINNs) for addressing key challenges in nonlinear lattices, including solution approximation, bifurcation diagram construction, and linear stability analysis. We first employ PINNs to approximate solutions of nonlinear systems arising from lattice models, using the Levenberg-Marquardt algorithm to optimize network weights for greater accuracy. To enhance computational efficiency in high-dimensional settings, we integrate a stochastic sampling strategy. We then extend the method by coupling PINNs with a continuation approach to compute snaking bifurcation diagrams, incorporating an auxiliary equation to effectively track successive solution branches. For linear stability analysis, we adapt PINNs to compute eigenvectors, introducing output constraints to enforce positivity, in line with Sturm-Liouville theory. Numerical experiments are conducted on the discrete Allen-Cahn equation with cubic and quintic nonlinearities in one to five spatial dimensions. The results demonstrate that the proposed approach achieves accuracy comparable to, or better than, traditional numerical methods, especially in high-dimensional regimes where computational resources are a limiting factor. These findings highlight the potential of neural networks as scalable and efficient tools for the study of complex nonlinear lattice systems.
- Abstract(参考訳): 本稿では,非線形格子における問題に対処するための物理インフォームドニューラルネットワーク(PINN)に基づくフレームワークを提案する。
我々はまず,格子モデルから生じる非線形系の解を近似するためにPINNを用い,より高精度にネットワーク重みを最適化するためにLevanz-Marquardtアルゴリズムを用いた。
高次元設定における計算効率を向上させるために,確率的サンプリング戦略を統合する。
次に, 逐次解枝を効果的に追跡する補助方程式を組み込んで, PINNと連続的手法を結合してスネーキング分岐図を計算し, 拡張する。
線形安定解析では、固有ベクトルを計算するためにPINNを適用し、Sturm-Liouville理論に則って出力制約を導入する。
離散アレン・カーン方程式において, 1次元から5次元の3次および5次非線形性を持つ数値実験を行った。
提案手法は,計算資源が制限要因である高次元状態において,従来の数値手法に匹敵する精度,あるいは優れた精度が得られることを示す。
これらの知見は、複雑な非線形格子系を研究するためのスケーラブルで効率的なツールとして、ニューラルネットワークの可能性を強調している。
関連論文リスト
- High precision PINNs in unbounded domains: application to singularity formulation in PDEs [83.50980325611066]
ニューラルネットワークアンサッツの選択、サンプリング戦略、最適化アルゴリズムについて検討する。
1次元バーガース方程式の場合、我々のフレームワークは非常に高精度な解が得られる。
2D Boussinesq 方程式の場合、損失が 4$ の解は citewang2023asymsymptotic よりも小さく、トレーニングステップは少ない。
論文 参考訳(メタデータ) (2025-06-24T02:01:44Z) - Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
我々は、回転、スケーリング、せん断、翻訳を含む入力画像の幾何学的変換に対するニューラルネットワークの検証の問題に対処する。
提案手法は, 分枝・分枝リプシッツと組み合わせたサンプリングおよび線形近似を用いて, 画素値に対する楽音線形制約を求める。
提案手法では,既存の手法よりも最大32%の検証ケースが解決されている。
論文 参考訳(メタデータ) (2024-08-23T15:02:09Z) - Neural networks for bifurcation and linear stability analysis of steady states in partial differential equations [0.0]
パラメータ化非線形PDEから分岐図を構築するニューラルネットワークを提案する。
固有値問題を解き、解の線形安定性を解析するためのニューラルネットワークアプローチも提示される。
論文 参考訳(メタデータ) (2024-07-29T05:05:13Z) - Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows [0.0]
本稿では,(2D)非圧縮性ナビエ-ストークス方程式に対する解を近似するためのニューラルネットワークに基づく新しい手法を提案する。
我々のアルゴリズムはニューラルネットワーク(NN)を用いており、ランダム渦ダイナミクスの計算効率の良い定式化を利用する損失関数に基づいて渦性を近似している。
論文 参考訳(メタデータ) (2024-05-22T14:36:23Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
パラメトリックナビエ・ストークス方程式(NSE)の解関数の学習にPIN(Palformed-Informed Neural Networks)を利用する。
パラメータのパラメータを座標とともにPINの入力とみなし、パラメータのインスタンスに対するパラメトリックPDESの数値解に基づいてPINを訓練する。
提案手法は, 解関数を学習するPINNモデルを最適化し, 流量予測が質量・運動量の保存則と一致していることを確認する。
論文 参考訳(メタデータ) (2024-02-05T16:19:53Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - RAR-PINN algorithm for the data-driven vector-soliton solutions and
parameter discovery of coupled nonlinear equations [6.340205794719235]
本研究の目的は、結合された非線形方程式とその相互作用のベクトル-ソリトン解を予測する効果的なディープラーニングフレームワークを提供することである。
本稿では,残差ベース適応改良(RAR-PINN)アルゴリズムと組み合わせた物理インフォームドニューラルネットワーク(PINN)を提案する。
論文 参考訳(メタデータ) (2022-04-29T12:34:33Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。