論文の概要: Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows
- arxiv url: http://arxiv.org/abs/2405.13691v2
- Date: Thu, 28 Nov 2024 17:53:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:15:33.023747
- Title: Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows
- Title(参考訳): ニューラルネットワークを用いた非圧縮性流れのモデル化のためのランダム渦法
- Authors: Vladislav Cherepanov, Sebastian W. Ertel,
- Abstract要約: 本稿では,(2D)非圧縮性ナビエ-ストークス方程式に対する解を近似するためのニューラルネットワークに基づく新しい手法を提案する。
我々のアルゴリズムはニューラルネットワーク(NN)を用いており、ランダム渦ダイナミクスの計算効率の良い定式化を利用する損失関数に基づいて渦性を近似している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we introduce a novel Neural Networks-based approach for approximating solutions to the (2D) incompressible Navier--Stokes equations, which is an extension of so called Deep Random Vortex Methods (DRVM), that does not require the knowledge of the Biot--Savart kernel associated to the computational domain. Our algorithm uses a Neural Network (NN), that approximates the vorticity based on a loss function that uses a computationally efficient formulation of the Random Vortex Dynamics. The neural vorticity estimator is then combined with traditional numerical PDE-solvers, which can be considered as a final implicit linear layer of the network, for the Poisson equation to compute the velocity field. The main advantage of our method compared to the standard DRVM and other NN-based numerical algorithms is that it strictly enforces physical properties, such as incompressibility or (no slip) boundary conditions, which might be hard to guarantee otherwise. The approximation abilities of our algorithm, and its capability for incorporating measurement data, are validated by several numerical experiments.
- Abstract(参考訳): 本稿では,Deep Random Vortex Methods (DRVM) の拡張である (2D) 圧縮不能な Navier-Stokes 方程式に対する解を近似するためのニューラルネットワークに基づく新しいアプローチを提案する。
我々のアルゴリズムはニューラルネットワーク(NN)を用いており、ランダム渦ダイナミクスの計算効率の良い定式化を利用する損失関数に基づいて渦性を近似している。
ニューラル渦性推定器は、ポアソン方程式が速度場を計算するために、ネットワークの最終暗黙の線形層と見なすことができる従来の数値PDE解法と結合される。
標準のDRVMや他のNNベースの数値アルゴリズムと比較して,本手法の主な利点は,非圧縮性や(すべりのない)境界条件などの物理的特性を厳格に強制することにある。
本アルゴリズムの近似能力と測定データを組み込む能力は,いくつかの数値実験により検証された。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - q-RBFNN:A Quantum Calculus-based RBF Neural Network [31.14412266444568]
放射状基底関数ニューラルネットワーク(RBFNN)に対する勾配降下に基づく学習手法を提案する。
提案手法は、ジャクソン微分(Jackson derivative)とも呼ばれるq勾配に基づく。
提案した$q$-RBFNNは最小二乗アルゴリズムの文脈における収束性能について解析する。
論文 参考訳(メタデータ) (2021-06-02T08:27:12Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Local Extreme Learning Machines and Domain Decomposition for Solving
Linear and Nonlinear Partial Differential Equations [0.0]
本稿では線形偏微分方程式と非線形偏微分方程式の解法を提案する。
この手法は、極端学習機械(ELM)、ドメイン分解、局所ニューラルネットワークのアイデアを組み合わせたものである。
本稿では,DGM法(Deep Galerkin Method)とPINN(Physical-informed Neural Network)を精度と計算コストの観点から比較する。
論文 参考訳(メタデータ) (2020-12-04T23:19:39Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。