論文の概要: Federated Calculation of the Free-Support Transportation Barycenter by Single-Loop Dual Decomposition
- arxiv url: http://arxiv.org/abs/2507.19627v1
- Date: Fri, 25 Jul 2025 18:54:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.862647
- Title: Federated Calculation of the Free-Support Transportation Barycenter by Single-Loop Dual Decomposition
- Title(参考訳): 単一ループ双極子分解による自由輸送バリアセンターの連成計算
- Authors: Zhengqi Lin, Andrzej Ruszczyński,
- Abstract要約: 本稿では,複数の分布のワッサーシュタインバリセンタを計算するための効率的なフェデレーション二重分解アルゴリズムを提案する。
アルゴリズムはローカルデータにアクセスせず、高度に集約された情報のみを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an efficient federated dual decomposition algorithm for calculating the Wasserstein barycenter of several distributions, including choosing the support of the solution. The algorithm does not access local data and uses only highly aggregated information. It also does not require repeated solutions to mass transportation problems. Because of the absence of any matrix-vector operations, the algorithm exhibits a very low complexity of each iteration and significant scalability. We illustrate its virtues and compare it to the state-of-the-art methods on several examples of mixture models.
- Abstract(参考訳): 本稿では,複数の分布のワッサーシュタインバリセンタを計算し,解の支持を選択することを含む効率的なフェデレーション二重分解アルゴリズムを提案する。
アルゴリズムはローカルデータにアクセスせず、高度に集約された情報のみを使用する。
また、大量輸送問題に対する繰り返しの解決策も必要としない。
行列ベクトル演算が存在しないため、アルゴリズムは各イテレーションの複雑さが非常に低く、スケーラビリティもかなり低い。
混合モデルのいくつかの例において、その美徳を解説し、最先端の手法と比較する。
関連論文リスト
- Exact and Heuristic Algorithms for Constrained Biclustering [0.0]
コクラスタリング(co-clustering)または双方向クラスタリング( two-way clustering)とも呼ばれるビクラスタリングは、データマトリックスの行と列を同時にパーティショニングすることで、コヒーレントパターンによるサブマトリクスを明らかにする。
我々は、オブジェクトが同一または異なるビクラスタに属するべきか否かを規定する制約付きビクラスタリング、すなわち、マスタリンクとナントリンクの制約について研究する。
論文 参考訳(メタデータ) (2025-08-07T15:29:22Z) - Highly Efficient Rotation-Invariant Spectral Embedding for Scalable Incomplete Multi-View Clustering [41.37759812894945]
スケーラブルな不完全なマルチビュークラスタリングのための高効率な回転不変スペクトル埋め込み(RISE)法を提案する。
RISEは、不完全な二部グラフからビュー固有の埋め込みを学び、補完的な情報をキャプチャする。
線形複雑性と有望収束を考慮した高速交互最適化アルゴリズムを設計し,提案した定式化を解く。
論文 参考訳(メタデータ) (2025-01-21T05:20:02Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - A Comparative Analysis of Distributed Linear Solvers under Data Heterogeneity [9.248526557884498]
本稿では,タスクマスターと機械の集合によって分散的あるいは連合的に線形方程式の大規模系を解く問題を考察する。
我々は、この問題を解決するためによく知られたアルゴリズムの2つのクラス、すなわち射影法と最適化法を比較した。
論文 参考訳(メタデータ) (2023-04-20T20:48:00Z) - Forster Decomposition and Learning Halfspaces with Noise [60.691817861402676]
フォースター変換 (Forster transform) は、分布を優れた反集中特性を持つものに変換する演算である。
本稿では,Forster変換が存在し,効率よく計算できる少数の分布の解離混合として,任意の分布を効率的に分解可能であることを示す。
論文 参考訳(メタデータ) (2021-07-12T17:00:59Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
本研究では,多元的固有ベクトルを分散制約で同時に計算するTruncated Orthogonal Iterationの2つの変種を提案する。
次に,我々のアルゴリズムを適用して,幅広いテストデータセットに対するスパース原理成分分析問題を解く。
論文 参考訳(メタデータ) (2021-03-24T23:11:32Z) - Projection Robust Wasserstein Barycenter [36.97843660480747]
ワッサースタイン・バリセンターの 近似は 次元の呪いのため 数値的に困難です
本稿では,次元の呪いを緩和するプロジェクションロバストなワッサーシュタインバリセンタ(PRWB)を提案する。
論文 参考訳(メタデータ) (2021-02-05T19:23:35Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Communication-efficient distributed eigenspace estimation [31.69089186688224]
我々は,データ行列の先頭不変部分空間を計算するための通信効率のよい分散アルゴリズムを開発した。
提案アルゴリズムは局所解と参照解の間のプロクリスト距離を最小化する新しいアライメント方式を用いる。
本アルゴリズムは,集中型推定器と同様の誤差率を示す。
論文 参考訳(メタデータ) (2020-09-05T02:11:22Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
正規化ワッサーシュタイン・バリセンタ問題に対する新しい双対定式化を導入する。
我々は、強い双対性を確立し、対応する主対関係を用いて、正規化された輸送問題の双対ポテンシャルを用いて暗黙的にバリセンターをパラメトリゼーションする。
論文 参考訳(メタデータ) (2020-08-28T08:28:06Z) - Solution Path Algorithm for Twin Multi-class Support Vector Machine [6.97711662470035]
本論文は, ツインマルチクラスサポートベクトルマシンの高速正規化パラメータチューニングアルゴリズムについて述べる。
新たなサンプルデータセット分割法を採用し,ラグランジアン乗算器は分数線形であることが証明された。
提案手法は,グリッド探索手法の計算コストを指数レベルから定数レベルに削減し,優れた分類性能を実現する。
論文 参考訳(メタデータ) (2020-05-30T14:05:46Z) - Joint Wasserstein Distribution Matching [89.86721884036021]
JDM問題(Joint Distribution matching)は、2つのドメインの関節分布を一致させるために双方向マッピングを学習することを目的としており、多くの機械学習およびコンピュータビジョンアプリケーションで発生している。
2つの領域における関節分布のワッサーシュタイン距離を最小化することにより、JDM問題に対処することを提案する。
そこで我々は,難解な問題を簡単な最適化問題に還元する重要な定理を提案し,その解法を開発した。
論文 参考訳(メタデータ) (2020-03-01T03:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。