論文の概要: PVD-ONet: A Multi-scale Neural Operator Method for Singularly Perturbed Boundary Layer Problems
- arxiv url: http://arxiv.org/abs/2507.21437v1
- Date: Tue, 29 Jul 2025 02:16:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.551259
- Title: PVD-ONet: A Multi-scale Neural Operator Method for Singularly Perturbed Boundary Layer Problems
- Title(参考訳): PVD-ONet: 特異摂動境界層問題に対するマルチスケールニューラル演算子法
- Authors: Tiantian Sun, Jian Zu,
- Abstract要約: Prandtl-Van Dyke Neural Network(PVDNet)とその演算子学習拡張Prendtl-Van Dyke Deep Operator Network(PVD-ONet)
本稿では,2つの新しいフレームワーク,Prendtl-Van Dyke Neural Network (PVDNet) と演算子学習拡張Prndtl-Van Dyke Deep Operator Network (PVD-ONet)を提案する。
提案手法は,様々な誤差指標の下で,既存のベースラインを一貫して上回ることを示す。
- 参考スコア(独自算出の注目度): 0.8287206589886881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks and Physics-informed DeepONet excel in solving partial differential equations; however, they often fail to converge for singularly perturbed problems. To address this, we propose two novel frameworks, Prandtl-Van Dyke neural network (PVD-Net) and its operator learning extension Prandtl-Van Dyke Deep Operator Network (PVD-ONet), which rely solely on governing equations without data. To address varying task-specific requirements, both PVD-Net and PVD-ONet are developed in two distinct versions, tailored respectively for stability-focused and high-accuracy modeling. The leading-order PVD-Net adopts a two-network architecture combined with Prandtl's matching condition, targeting stability-prioritized scenarios. The high-order PVD-Net employs a five-network design with Van Dyke's matching principle to capture fine-scale boundary layer structures, making it ideal for high-accuracy scenarios. PVD-ONet generalizes PVD-Net to the operator learning setting by assembling multiple DeepONet modules, directly mapping initial conditions to solution operators and enabling instant predictions for an entire family of boundary layer problems without retraining. Numerical experiments on various models show that our proposed methods consistently outperform existing baselines under various error metrics, thereby offering a powerful new approach for multi-scale problems.
- Abstract(参考訳): 物理インフォームド・ニューラルネットワークと物理インフォームド・ディープONetは偏微分方程式の解法において優れているが、特異摂動問題に対して収束しないことが多い。
そこで本稿では,データのない制御方程式に依存する,Prendtl-Van Dyke Neural Network (PVD-Net) と,その演算子学習拡張Prndtl-Van Dyke Deep Operator Network (PVD-ONet) の2つの新しいフレームワークを提案する。
タスク固有の要件に対処するため、PVD-NetとPVD-ONetは2つの異なるバージョンで開発されている。
最上位のPVD-Netは、2ネットワークアーキテクチャとPrendtlのマッチング条件を組み合わせて、安定性を優先したシナリオをターゲットにしている。
高階PVD-Netは、Van Dykeの整合原理による5ネットワーク設計を採用し、微細な境界層構造を捕捉し、高精度なシナリオに最適である。
PVD-ONetは、複数のDeepONetモジュールを組み立てることで、PVD-Netを演算子学習環境に一般化し、初期条件を直接ソリューション演算子にマッピングし、再トレーニングせずに境界層問題全体の即時予測を可能にする。
種々のモデルに対する数値実験により,提案手法は様々な誤差尺度の下で既存のベースラインを一貫して上回り,マルチスケール問題に対する強力な新しいアプローチを提供することを示した。
関連論文リスト
- Layer-wise Quantization for Quantized Optimistic Dual Averaging [75.4148236967503]
我々は、訓練の過程で不均一性に適応し、厳密な分散とコード長境界を持つ一般的な層ワイド量子化フレームワークを開発する。
本稿では,適応学習率を持つ量子最適化双対平均化(QODA)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-20T13:53:58Z) - LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
ラグランジュの平均値定理に着想を得た演算子ネットワークであるLaPONを提案する。
損失関数ではなく、ニューラルネットワークアーキテクチャに直接、事前の知識を組み込む。
LaPONは、高忠実度流体力学シミュレーションのためのスケーラブルで信頼性の高いソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-18T10:45:17Z) - DeepONet for Solving Nonlinear Partial Differential Equations with Physics-Informed Training [2.44755919161855]
非線形偏微分方程式(PDE)の解法における演算子学習、特にDeepONetの利用について検討する。
本研究では,物理インフォームドトレーニングにおけるDeepONetの性能について検討し,(1)ディープブランチとトランクネットワークの近似能力,(2)ソボレフノルムの一般化誤差の2点に着目した。
論文 参考訳(メタデータ) (2024-10-06T03:43:56Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - An Adaptive and Stability-Promoting Layerwise Training Approach for Sparse Deep Neural Network Architecture [0.0]
この研究は、与えられたトレーニングデータセットに対してうまく一般化するディープニューラルネットワーク(DNN)アーキテクチャを開発するための2段階適応フレームワークを提案する。
第1段階では、新しいレイヤを毎回追加し、前のレイヤでパラメータを凍結することで独立してトレーニングする、レイヤワイズトレーニングアプローチが採用されている。
本稿では, 学習アルゴリズムの望ましい特性として, エプシロン・デルタ安定促進の概念を導入し, 多様体正規化を用いることで, エプシロン・デルタ安定促進アルゴリズムが得られることを示す。
論文 参考訳(メタデータ) (2022-11-13T09:51:16Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。